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The information provided in this document does not, and is not intended to, constitute legal advice. All 

information is for general informational purposes only. This document contains links to other third-party 

websites. Such links are only for convenience and OWASP does not recommend or endorse the contents of 

the third-party sites.  

License and Usage 

This document is licensed under Creative Commons, CC BY-SA 4.0 

You are free to: 

● Share — copy and redistribute the material in any medium or format 

● Adapt — remix, transform, and build upon the material for any purpose, even commercially. 

● Under the following terms: 

○ Attribution — You must give appropriate credit, provide a link to the license, and indicate if 

changes were made. You may do so in any reasonable manner but not in any way that 

suggests the licensor endorses you or your use. 

○ Attribution Guidelines - must include the project name as well as the name of the asset 

Referenced 

■ OWASP Top 10 for LLMs - GenAI Red Teaming Guide 

● ShareAlike — If you remix, transform, or build upon the material, you must distribute your 

contributions under the same license as the original. 

Link to full license text: https://creativecommons.org/licenses/by-sa/4.0/legalcode 
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Introduction 
 

Agentic AI represents an advancement in autonomous systems, increasingly enabled by large language 

models (LLMs) and generative AI. While agentic AI predates modern LLMs, their integration with generative 

AI has significantly expanded their scale, capabilities, and associated risks. This document is the first in a 

series of guides from the OWASP Agentic Security Initiative (ASI) to provide a threat-model-based reference 

of emerging agentic threats and discuss mitigations.  

The document:  

● Defines the scope and audience 

● Provides a definition of agentic terms, capabilities, and architecture 

● Discusses threat modelling approaches and provides a reference threat model discussing new 

agentic threats and mitigations 

● Illustrates the threats in different settings with threat models for four example scenarios 

● Documents threats with a structured and detailed Agentic Threat Taxonomy  

● Details mitigations and playbooks   

 
Scope and Audience 
Our work focuses on agents based on large language models (LLMs), as these general-purpose models 

revolutionize agentic capabilities and, unlike previous agentic generations, bring more capabilities and 

widespread use. 

We aim to provide an easy-to-follow, practical, and actionable reference to threats and mitigations of 

Agentic AI applications. We introduce some basic concepts and use a reference architecture of agentic AI, 

acting as the canvas for threat models, to explain and contextualize agentic threats. However, providing a 

detailed definition and architecture of agentic AI is beyond the scope of our work. 

Our work focuses on Agentic AI threats and relies on existing guidelines and standards, such as the OWASP 

Top 10 for LLM Applications and Generative AI, OWASP AI Exchange, OWASP Top 10, and the OWASP Top 10 

for APIs to address related aspects inherent in building AI applications. When relevant, we highlight Agentic 

AI's impact on existing threats and risks. 

The intended audience of this document are builders and defenders of agentic applications, including 

developers, architects, platform and QA engineers, and security professionals. This is our first report, and 

we plan to provide additional role-based guides as follow-ups to this document for technical and decision-

making audiences.  
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AI Agents 
 

An agent is an intelligent software system designed to perceive its environment, reason about it, make 

decisions, and take actions to achieve specific objectives autonomously. More specifically, " Russell and 

Norvig define agents in their classic “Artificial Intelligence: A Modern Approach” as follows:  

“An intelligent agent is "an agent that acts appropriately for its circumstances and its goals, is flexible to 

changing environments and goals, learns from experience, and makes appropriate choices given its perceptual 

and computational limitations." (Artificial Intelligence: A Modern Approach, 4th ed., p. 34”) 

AI Agents use Machine Learning (ML) for reasoning; traditional ML approaches (such as Reinforcement 

Learning) playing a key role in each development. The Open AI Gym (now Farama Foundation’s  Gymnasium), 

helped drive  the first wave of Agentic AI. However, the advanced capabilities, NLP interface, and scale of 

LLMs have revolutionized agentic AI and accelerated adoption.   

Well-known vendors and enterprises are embracing LLM agents, and Gartner forecasts that by 2028 33% of 

enterprise software applications will utilize agentic AI “enabling 15% of day-to-day work decisions to be 

made autonomously”. 

 

Core Capabilities 
There are many ways to describe an agent, but typically, an agent or agentic AI system will exhibit the 

following elements: 

● Planning & Reasoning: Agents can reason and decide about the steps necessary to achieve their 

objectives. This includes formulating, tracking, and updating their action plans to handle complex 

tasks (the Reason + Act, ReAct pattern). Modern Agents use LLMs as their reasoning engines, with 

agents using the LLM to decide the control flow of the application. This is a fundamental aspect of 

agentic autonomy.  Use of reinforcement in this new generation of agents still plays a role but as a 

mechanism to improve training and reasoning, not core reasoning. This is described in “OpenAI 

Computer-User Agent research preview, a state-of-the-art agent performing interactive web tasks 

for users”. See https://openai.com/index/operator-system-card/   

Advances in LLMs have allowed for sophisticated reasoning and planning strategies such as: 

https://github.com/openai/gym
https://gymnasium.farama.org/
https://www.wsj.com/articles/how-are-companies-using-ai-agents-heres-a-look-at-five-early-users-of-the-bots-26f87845
https://arxiv.org/abs/2210.03629
https://openai.com/index/operator-system-card/
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○ Reflection, where the agent evaluates past actions and their results to determine future 

plans or behaviors.  Self-Critic, is a key component of reflection, where the agent critiques 

its own reasoning or output to identify and correct errors. 

○ Chain of Thought is a step-by-step reasoning process in which the agent breaks down 

complex problems into sequential, logical steps. This can involve multi-step workflows, 

including ones without human interaction.  

○ Subgoal Decomposition, which involves dividing a main goal into smaller, manageable tasks 

or milestones to achieve the overall objective 

● Memory / Statefulness to retain and recall information. This is either information from previous 

runs or the previous steps it took in the current run (i.e., the reasoning behind their actions, tools 

they called, the information they retrieved, etc.).  Memory can either be either session-based short-

term or persistent long-term memory. 

● Action and Tool Use: Agents can take action to accomplish tasks and invoke tools as part of the 

actions.  These can be built-in tools and functions such as browsing the web, conducting complex 

mathematical calculations, and generating or running executable code in response to a user’s query.  

Agents can access more advanced tools via external API calls and a dedicated Tools interface.  

These are complemented by augmented LLMs, which offer the tool invocation from code generated 

by the model via function calling, a specialized form of tool use. 

 

For more information on LLM function calling, see 
● https://platform.openai.com/docs/guides/function-calling 

● https://huggingface.co/docs/hugs/en/guides/function-calling 

● https://python.langchain.com/v0.1/docs/modules/model_io/chat/function_calling/ 

● https://medium.com/@rushing_andrei/function-calling-with-open-source-llms-594aa5b3a304  

OpenAI researcher Lilian Wang has described these capabilities in these popular diagrams republished from 

her seminal 2023 blog on LLM-based Agents. 

https://platform.openai.com/docs/guides/function-calling
https://huggingface.co/docs/hugs/en/guides/function-calling
https://python.langchain.com/v0.1/docs/modules/model_io/chat/function_calling/
https://medium.com/@rushing_andrei/function-calling-with-open-source-llms-594aa5b3a304
https://lilianweng.github.io/posts/2023-06-23-agent/
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Agents and LLM Applications 
LLM applications can exhibit agency and agentic behavior as described in the OWASP Top 10 for LLM 

Applications as part of the Excessive Agency and agents can be written as a LLM applications with the ability 

to reason and take action using tools like APIs, databases and so on beyond than just generating text-based 

output. 

 

Increasingly, developers use agentic AI frameworks, which encapsulate agentic capabilities and offer 

greater productivity and reuse. Popular frameworks include LangChain/LangFlow, AutoGen, CrewAI, and so 

on. 

● Our forthcoming OWASP Agentic AI Landscape will provide a more in-depth guide to the available 

frameworks and tools. 

● A brief comparison of popular Agentic frameworks can be found at: LangChain and LangGraph: 

Comparing Function and Tool Calling Capabilities   

https://genai.owasp.org/llmrisk/llm062025-excessive-agency/
https://genai.owasp.org/llmrisk/llm062025-excessive-agency/
https://www.linkedin.com/posts/ronaldfloresdelrosario_langchain-vs-langgraph-function-and-tool-activity-7278836969529294848-QDot?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/ronaldfloresdelrosario_langchain-vs-langgraph-function-and-tool-activity-7278836969529294848-QDot?utm_source=share&utm_medium=member_desktop
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● You can find examples of LLM agents written using these popular frameworks in our OWASP ASI 

GitHub repository at https://github.com/OWASP/www-project-top-10-for-large-language-model-

applications/tree/main/initiatives/agent_security_initiative. These are intentionally vulnerable 

agents but to demonstrate vulnerabilities but can also demonstrate how agents work. 

Autonomy and agency can also vary depending on the style of orchestration in the agent, ranging from 

hardcoded to constrained via code or finite-state machine workflows (LangFlow) and fully conversational, 

where decisions depend purely on interactions and model reasoning. 

 

  

https://github.com/OWASP/www-project-top-10-for-large-language-model-applications/tree/main/initiatives/agent_security_initiative
https://github.com/OWASP/www-project-top-10-for-large-language-model-applications/tree/main/initiatives/agent_security_initiative
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Agentic AI Reference 
Architecture 
  

The capabilities described above are implemented as part of the agent software but do not inherently 

translate into standalone, deployable components unless explicitly designed that way. While it is possible to 

build fully modular and externally accessible agent components, doing so adds significant complexity. In 

practice, most agent deployments integrate these capabilities within the software itself rather than 

exposing them as independent services.  

Our aim is to bring together capabilities and concepts found in research and other literature with the developer 

experiences by mapping capabilities to components. 

The following diagram illustrates single-agent architecture, highlighting the key deployable components 

relevant to our threat modeling. 

 
Single Agent Architecture 

 

Deployable components will include: 
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1. An application that has embedded agentic functionality to perform tasks for the user on behalf of 

the user, often outside a specific user session.  

2. An agent generally accepts natural language input similar to inputs used for NLP models. This will 

be textual prompts and optional media such as files, images, sound, or video. The application's code 

implements the core capabilities and most likely relies on abstractions offered by an agentic 

framework (LangChain/LangFlow, AutoGen, Crew.AI, and so on).  

3. One or more LLM models (local or remote) are used for reasoning 

4. Services, including built-in functions, local tools, and local application code, local or remote and 

external services, will be called in two possible manners: 

a. Function calling and optional Tools interface at the framework/application level 

b. Function calling by an LLM model returning invocation code to the agent. 

5. Supporting services, part of the agent infrastructure and core functionality.: 

a. External Storage for persistent Long-term memory  

b. Other data sources include a Vector database, other data, and content used in RAG. RAG 

related sources can also be seen as part of the tools, but we highlight it here as a core 

supporting service that can be used in any LLM application. 

 
Multi-agent Architecture 
A multi-agent architecture comprises multiple agents that can scale or combine specialist roles and 

functionality in an agentic solution. In both cases, the architecture is similar except for introducing inter-

agent communication and, optionally, a coordinating agent. See for example the use of a coordinating 

supervisor agent in a multi-agent architecture using Amazon bedrock: 

https://aws.amazon.com/blogs/aws/introducing-multi-agent-collaboration-capability-for-amazon-

bedrock/ 

Depending on the solution, different specialist agents may be introduced with additional capabilities, such 

as the core ones we have defined. The following diagram illustrates an example of multi-agent architecture 

with additional specialized roles and capabilities: 

https://aws.amazon.com/blogs/aws/introducing-multi-agent-collaboration-capability-for-amazon-bedrock/
https://aws.amazon.com/blogs/aws/introducing-multi-agent-collaboration-capability-for-amazon-bedrock/
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The diagram depicts an example of multi-agent architecture of specialized agent functionality. Specialized 

functionality is a form of agentic patterns and could be exhibited by any agent depending on the use case. 

 
Agentic AI Patterns  
Specialized roles and planning strategies contribute to agentic patterns. These patterns are emerging as 

building blocks that can be combined in a single agent; they can help us understand large-scale 

architectures and aid efficient threat-modeling conversations with consistent language. A detailed 

treatment of agentic patterns is beyond the scope of ASI’s work, but we provide below to help standardize 

conversations in threat modeling.  

 

Pattern Description 

Reflective Agent  Agents that iteratively evaluate and critique their own outputs to enhance performance. 
Example: AI code generators that review and debug their own outputs, like Codex with self-
evaluation. 

Task-Oriented Agent  Agents designed to handle specific tasks with clear objectives. Example: Automated 
customer service agents for appointment scheduling or returns processing. 
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Hierarchical Agent  Agents are organized in a hierarchy, managing multi-step workflows or distributed control 
systems. Example: AI systems for project management where higher-level agents oversee 
task delegation. 

Coordinating Agent Agents facilitate collaboration and coordination and tracking, ensuring efficient execution. 
Example: a coordinating agent assigns subtasks to specialized agents, such as in AI-
powered DevOps workflows where one agent plans deployments, another monitors 
performance, and a third handles rollbacks based on system feedback. 

Distributed Agent 
Ecosystem 

Agents interact within a decentralized ecosystem, often in applications like IoT or 
marketplaces. Example: Autonomous IoT agents managing smart home devices or a 
marketplace with buyer and seller agents. 

Human-in-the-Loop 
Collaboration 

Agents operate semi-autonomously with human oversight. Example: AI-assisted medical 
diagnosis tools that provide recommendations but allow doctors to make final decisions. 

Self-Learning and 
Adaptive Agents 

Agents adapt through continuous learning from interactions and feedback. Example: Co-
pilots, which adapt to user interactions over time, learning from feedback and adjusting 
responses to better align with user preferences and evolving needs. 

RAG-Based Agent  This pattern involves the use of Retrieval Augmented Generation (RAG), where AI agents 
utilize external knowledge sources dynamically to enhance their decision-making and 
responses. Example: Agents performing real-time web browsing for research assistance. 

Planning Agent  Agents autonomously devise and execute multi-step plans to achieve complex objectives. 
Example: Task management systems organizing and prioritizing tasks based on user goals. 

Context- Aware 
Agent  

Agents dynamically adjust their behavior and decision-making based on the context in which 
they operate. Example: Smart home systems adjusting settings based on user preferences 
and environmental conditions. 

 

 

These are based on the following references: 

● Ken Huang’s CSA blog an agentic patterns at https://cloudsecurityalliance.org/blog/2024/12/09/from-

ai-agents-to-multiagent-systems-a-capability-framework 

● The Landscape of Emerging AI Agent Architectures for Reasoning, Planning, and Tool Calling: A 

Survey by Masterman et al. 2024 at https://arxiv.org/abs/2404.11584   

● Andrew Ng’s articles on the Batch on Agentic Design patterns https://www.deeplearning.ai/the-

batch/how-agents-can-improve-llm-performance  

● Building effective agents by Anthropic team http://anthropic.com/research/building-effective-

agents  

● Agents by Chip Huyen  https://huyenchip.com/2025/01/07/agents.html  

https://cloudsecurityalliance.org/blog/2024/12/09/from-ai-agents-to-multiagent-systems-a-capability-framework
https://cloudsecurityalliance.org/blog/2024/12/09/from-ai-agents-to-multiagent-systems-a-capability-framework
https://arxiv.org/abs/2404.11584
https://www.deeplearning.ai/the-batch/how-agents-can-improve-llm-performance
https://www.deeplearning.ai/the-batch/how-agents-can-improve-llm-performance
http://anthropic.com/research/building-effective-agents
http://anthropic.com/research/building-effective-agents
https://huyenchip.com/2025/01/07/agents.html
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Agentic AI Threat Model 
  

Threat modeling approach 
Threat modeling is a structured, repeatable process for identifying and mitigating security risks in a system. 

It involves analyzing a system from an adversarial perspective, identifying potential threats, and determining 

appropriate defenses. Ideally integrated into the software development lifecycle (SDLC), threat modeling is 

an ongoing process that evolves with the system. As outlined in the Threat Modeling Manifesto, it addresses 

four key questions: What are we working on? What can go wrong? What are we going to do about it? Did we do 

a good enough job? 

There are established methodologies, such as STRIDE or PASTA that help practitioners perform threat 

modeling, but they are rooted in traditional cyber vulnerabilities and must be expanded or mapped to AI 

vulnerabilities.  You can find our more about threat modelling in application development and threat 

modelling methodologies in  

https://cheatsheetseries.owasp.org/cheatsheets/Threat_Modeling_Cheat_Sheet.html  

The GenAI Red Teaming guide from the OWASP Top 10 for LLM Project discusses Threat Modeling for 

Generative AI/LLM Systems 

 https://genai.owasp.org/resource/genai-red-teaming-guide/ 

A comprehensive extension to STRIDE to handle Agentic AI is the layered-based MAESTRO methodology 

which offers a detailed lens to identify Agentic Threats through the use of architectural layers.  For more 

details about this layered architecture, please refer to 

https://cloudsecurityalliance.org/blog/2025/02/06/agentic-ai-threat-modeling-framework-maestro  

Methodologies can impose cognitive barriers, deterring newcomers from understanding emerging threats in 

leading-edge technology settings. Furthermore, methodologies like MAESTRO cover both agentic as well as 

traditional ML and application threats, and our explicit focus is on Agentic threats.    

As a result, in this document, we do not follow a specific methodology, but we focus on the use of our 

reference architecture to identify threats and an accompanying table to explain threats, attack scenarios, 

relationship to applicable LLM Top 10, and mitigations.  

We recommend that practitioners evaluate and use a methodology that suits their organizational context, 

noting the agentic extensions that MAESTRO brings. 

 

https://cheatsheetseries.owasp.org/cheatsheets/Threat_Modeling_Cheat_Sheet.html
https://genai.owasp.org/resource/genai-red-teaming-guide/
https://cloudsecurityalliance.org/blog/2025/02/06/agentic-ai-threat-modeling-framework-maestro
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Reference Threat Model 
Agentic applications will have threats related to the application layer, API, and ML/LLMs and it is imperative 

that these are identified and addressed in your own threat model.  

Since threats not specific to agentic systems are already covered in other OWASP guides and to avoid 

duplication and overlaps for these threats, we refer to you to the following documents: 

● OWASP Top 10 2021 (and the forthcoming 2025 edition) 

● OWASP Top 10 API Security Risks – 2023 

● OWASP Top 10 for LLM Applications and Generative AI for 2025 

● OWASP AI Exchange  

● MITRE Atlas 

● NIST AI 100-2 E2023 Adversarial ML - A taxonomy of threats and mitigations  

Agentic AI threats are either new or agentic variations of existing threats. Some notable threats are the 

result of new components agentic AI application architecture brings.  We discuss in detail threats and 

mitigations in the next two sections; this section introduces the new threats and risks as part of the reference 

threat model.  

Agent Memory and Tools integration become two key attack vectors susceptible to memory poisoning and 

tools misuse especially in contexts of unconstrained autonomy either in advanced planning strategies or 

multi-agent architectures where agents learn from each other’s conversations. Tool misuse relates to LLM 

Top 10’s excessive agency but introduces new complexities we discuss in greater detail in our Agentic 

Threats Taxonomy section.  An area where tools misuse requires more attention is code generation creating 

new attack vectors and risks for Remote Code Execution (RCE) and code attacks. 

Use of tools affects identity and authorization, too, making it a critical security challenge, leading to violation 

of intended trust boundaries in agentic environments.  

As identity flows into integrated tools and APIs, a Confused Deputy vulnerability arises when an AI agent 

(the "deputy") has higher privileges than the user but is tricked into performing unauthorized actions on the 

user’s behalf. This typically occurs when an agent lacks proper privilege isolation and cannot distinguish 

between legitimate user requests and adversarial injected instructions. For example, if an AI agent is 

allowed to execute database queries but does not properly validate user input, an attacker could trick it into 

executing high-privilege queries that the attacker themselves would not have direct access to.  

To mitigate this, it is essential to down scope agent privileges when operating on behalf of the user. This is 

essential to prevent hijacking control via prompt injections and Identity spoofing and impersonation.  

https://owasp.org/Top10/
https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://genai.owasp.org/llm-top-10/
https://owaspai.org/
https://atlas.mitre.org/
https://csrc.nist.gov/pubs/ai/100/2/e2023/final
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Additionally, Non-Human Identities (NHI)—such as machine accounts, service identities, and agent-based 

API keys—play a key role in agentic AI security. Agents often operate under NHIs when interfacing with cloud 

services, databases, and external tools. Unlike traditional user authentication, NHIs may lack session-based 

oversight, increasing the risk of privilege misuse or token abuse if not carefully managed. 

Agentic AI redefines privilege compromise because it goes beyond predefined actions and will exploit any 

misconfigurations or gaps in dynamic access.   While tool access APIs may enforce restrictions, security 

gaps can still emerge when agents operate with overly broad API scopes, allowing attackers to manipulate 

them into executing unintended functions, such as exfiltrating data instead of retrieving authorized 

information. Additionally, implicit privilege escalation can occur when AI agents inherit excessive 

permissions from user sessions or service tokens, leading to unauthorized operations. Even when individual 

tool APIs enforce restrictions, agents can chain multiple tools in unexpected ways, bypassing intended 

security controls, for example, retrieving sensitive data via an external API and embedding it in a user-visible 

response. 

These can result to critical data breaches necessitating, as discussed in the Mitigation Strategies section, 

clear identify flows, strict RBAC and a zero-trust model for agent access to enterprise environments.     

Tools with their interaction with a wider focus on supply chain. Use of agentic frameworks exacerbate the 

risks but we have not introduced a new threat or vulnerability, as LLM03:2025 - Supply Chain covers this 

already. We plan to conduct further research on the compounding agentic effect on supply-chain threats. 

Similarly, Retrieval-Augmented Generation (RAG) is a core mechanism in modern agentic AI systems, 

awareness and response accuracy, it also introduces security risks such as knowledge poisoning, 

hallucination amplification, and indirect prompt injections. 

RAG-related security concerns are foundational LLM issues and are extensively addressed in the OWASP 

Top 10 for LLM Applications (LLM08:2025 - Vector and Embedding Weaknesses). As such, we do not 

cover them in detail here. Readers should refer to that section and implement necessary mitigations, 

including permission-aware vector databases, data validation pipelines, and continuous monitoring for 

poisoning or embedding inversion risks. 

Hallucinations (as covered in Overreliance and Misinformation in the Top 10 for LLM App) become equally 

more complex with multiple attack paths that agents can follow. In the case of hallucinations, we introduce 

the term cascading hallucinations to emphasize the agentic effect on this via self-reflection or critic 

planning schedules or multi-agent communication.   

Cascading hallucinations occur when an AI agent generates inaccurate information, which is then reinforced 

through its memory, tool use, or multi-agent interactions, amplifying misinformation across multiple 

https://genai.owasp.org/llmrisk/llm032025-supply-chain/
https://genai.owasp.org/llmrisk/llm082025-vector-and-embedding-weaknesses/
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decision-making steps. This can lead to systemic failures, particularly in critical domains such as healthcare, 

finance, or cybersecurity. For example, in a multi-agent environment, if one agent misinterprets a financial 

transaction anomaly as legitimate, subsequent agents may validate and act on this misinformation, 

propagating an incorrect decision across an automated workflow. 

Human oversight and Human in The Loop (HITL) controls have been a key LLM application defense to 

hallucinations, decision errors, and adversarial manipulations.  The complexity and scale of agentic AI brings 

new challenges creating new attack vectors where an attacker can overwhelm HITL with complex 

interactions. This is especially true in multi-agent architectures raising the critical question of scaling AI 

safely. 

New inherently agentic threats strike at the heart of Agentic AI applications include the manipulation of 

intents and goals in planning and the appearance of misaligned and deceptive behaviors in an agent’s drive 

to achieve a goal regardless of costs or consequences. Misaligned behaviors can also be the result of 

destructive reasoning and there is some overlap to cascading hallucinations. Related to deceptive behaviors 

is the human manipulation we see by agents exploiting the trust humans develop, especially with 

conversational agents in co-pilot settings. 

These complex agentic threats require careful logging and tracing, which is challenged by the repudiation 

and untraceability threats of the multiple - often parallel - reasoning and execution pathways in Agentic AI. 

These are threats that can be found in both single and multi-agent scenarios with multi-agency exacerbating 

risks with their complexity and scale. In addition, multi-agent architecture creates the potential for rogue 

agents and human attacks in multi-agent architectures manipulation exploiting distributed roles and 

workflows. 

These threats are captured in the following reference threat model: 
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Threat Model Summary: 

 

 

Detailed Threat Model: 

TID Threat Name Threat Description Mitigations 

T1 Memory Poisoning Memory Poisoning involves exploiting an AI's 
memory systems, both short and long-term, 
to introduce malicious or false data and 
exploit the agent’s context. This can lead to 
altered decision-making and unauthorized 
operations. 

Implement memory content validation, session 
isolation, robust authentication mechanisms for 
memory access, anomaly detection systems, and 
regular memory sanitization routines. Require AI-
generated memory snapshots for forensic analysis 
and rollback if anomalies are detected. 

T2 Tool Misuse Tool Misuse occurs when attackers 
manipulate AI agents to abuse their 
integrated tools through deceptive prompts 
or commands, operating within authorized 
permissions. This includes Agent Hijacking, 
where an AI agent ingests adversarial 
manipulated data and subsequently 
executes unintended actions, potentially 
triggering malicious tool interactions. For 
more information on Agent Hijacking see  
https://www.nist.gov/news-

Enforce strict tool access verification, monitor tool 
usage patterns, validate agent instructions, and set 
clear operational boundaries to detect and prevent 
misuse. Implement execution logs that track AI tool 
calls for anomaly detection and post-incident review. 

https://www.nist.gov/news-events/news/2025/01/technical-blog-strengthening-ai-agent-hijacking-evaluations
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events/news/2025/01/technical-blog-
strengthening-ai-agent-hijacking-
evaluations  

T3 Privilege 
Compromise 

Privilege Compromise arises when attackers 
exploit weaknesses in permission 
management to perform unauthorized 
actions. This often involves dynamic role 
inheritance or misconfigurations.  

Implement granular permission controls, dynamic 
access validation, robust monitoring of role changes, 
and thorough auditing of elevated privilege 
operations. Prevent cross-agent privilege delegation 
unless explicitly authorized through predefined 
workflows.  

T4 Resource Overload Resource Overload targets the 
computational, memory, and service 
capacities of AI systems to degrade 
performance or cause failures, exploiting 
their resource-intensive nature.  

Deploy resource management controls, implement 
adaptive scaling mechanisms, establish quotas, and 
monitor system load in real-time to detect and 
mitigate overload attempts. Implement AI rate-
limiting policies to restrict high-frequency task 
requests per agent session. 

T5 Cascading 
Hallucination 
Attacks 

These attacks exploit an AI's tendency to 
generate contextually plausible but false 
information, which can propagate through 
systems and disrupt decision-making. This 
can also lead to destructive reasoning 
affecting tools invocation. 

 

Establish robust output validation mechanisms, 
implement behavioral constraints, deploy multi-
source validation, and ensure ongoing system 
corrections through feedback loops. Require 
secondary validation of AI-generated knowledge 
before it is used in critical decision-making 
processes. This will face the same constraints of 
scaling AI as discussed in Overwhelming Human In the 
Loop and would require similar approaches. 

 

T6 Intent Breaking & 
Goal Manipulation 

This threat exploits vulnerabilities in an AI 
agent's planning and goal-setting 
capabilities, allowing attackers to 
manipulate or redirect the agent's objectives 
and reasoning. One common approach is 
Agent Hijacking mentioned in Tool Misuse. 

Implement planning validation frameworks, boundary 
management for reflection processes, and dynamic 
protection mechanisms for goal alignment. Deploy AI 
behavioral auditing by having another model check 
the agent and flag significant goal deviations that 
could indicate manipulation. 

T7 Misaligned & 
Deceptive 
Behaviors 

AI agents executing harmful or disallowed 
actions by exploiting reasoning and 
deceptive responses to meet their 
objectives.  

Train models to recognize and refuse harmful tasks, 
enforce policy restrictions, require human 
confirmations for high-risk actions, implement 
logging and monitoring. Utilize deception detection 
strategies such as behavioral consistency analysis, 
truthfulness verification models, and adversarial red 
teaming to assess inconsistencies between AI 
outputs and expected reasoning pathways.  

This threat  at an early stage but both Anthropic and 
OpenAI have published some work in this area ( see 
https://www.anthropic.com/research/towards-

https://www.nist.gov/news-events/news/2025/01/technical-blog-strengthening-ai-agent-hijacking-evaluations
https://www.nist.gov/news-events/news/2025/01/technical-blog-strengthening-ai-agent-hijacking-evaluations
https://www.nist.gov/news-events/news/2025/01/technical-blog-strengthening-ai-agent-hijacking-evaluations
https://www.anthropic.com/research/towards-understanding-sycophancy-in-language-models
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understanding-sycophancy-in-language-models and 
https://openai.com/index/faulty-reward-functions/ )  

 

T8 Repudiation & 
Untraceability 

Occurs when actions performed by AI agents 
cannot be traced back or accounted for due 
to insufficient logging or transparency in 
decision-making processes.  

Implement comprehensive logging, cryptographic 
verification, enriched metadata, and real-time 
monitoring to ensure accountability and traceability. 
Require AI-generated logs to be cryptographically 
signed and immutable for regulatory compliance. 

T9 Identity Spoofing & 
Impersonation 

Attackers exploit authentication 
mechanisms to impersonate AI agents or 
human users, enabling them to execute 
unauthorized actions under false identities.
  

Develop comprehensive identity validation 
frameworks, enforce trust boundaries, and deploy 
continuous monitoring to detect impersonation 
attempts. Use behavioral profiling, involving a second 
model, to detect deviations in AI agent activity that 
may indicate identity spoofing. 

T10 Overwhelming 
Human in the Loop  

This threat targets systems with human 
oversight and decision validation, aiming to 
exploit human cognitive limitations or 
compromise interaction frameworks.  

Develop advanced human-AI interaction frameworks, 
and adaptive trust mechanisms. These are dynamic 
AI governance models that employ dynamic 
intervention thresholds to adjust the level of human 
oversight and automation based on risk, confidence, 
and context. Apply hierarchical AI-human 
collaboration where low-risk decisions are 
automated, and human intervention is prioritized for 
high-risk anomalies. 

T11 Unexpected RCE 
and Code Attacks 

Attackers exploit AI-generated execution 
environments to inject malicious code, 
trigger unintended system behaviors, or 
execute unauthorized scripts. 

Restrict AI code generation permissions, sandbox 
execution, and monitor AI-generated scripts. 
Implement execution control policies that flag AI-
generated code with elevated privileges for manual 
review. 

T12 Agent 
Communication 
Poisoning 

Attackers manipulate communication 
channels between AI agents to spread false 
information, disrupt workflows, or influence 
decision-making.  

Deploy cryptographic message authentication, 
enforce communication validation policies, and 
monitor inter-agent interactions for anomalies. 
Require multi-agent consensus verification for 
mission-critical decision-making processes. 

T13 Rogue Agents in 
Multi-Agent 
Systems 

Malicious or compromised AI agents operate 
outside normal monitoring boundaries, 
executing unauthorized actions or 
exfiltrating data.  

Restrict AI agent autonomy using policy constraints 
and continuous behavioral monitoring. While 
cryptographic attestation mechanisms for LLMs do 
not yet exist, agent integrity can be maintained via 
controlled hosting environments, regular AI red 
teaming, and input/output monitoring for deviations 

 

https://www.anthropic.com/research/towards-understanding-sycophancy-in-language-models
https://openai.com/index/faulty-reward-functions/
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T14 Human Attacks on 
Multi-Agent 
Systems 

Adversaries exploit inter-agent delegation, 
trust relationships, and workflow 
dependencies to escalate privileges or 
manipulate AI-driven operations.  

Restrict agent delegation mechanisms, enforce inter-
agent authentication, and deploy behavioral 
monitoring to detect manipulation attempts. Enforce 
multi-agent task segmentation to prevent attackers 
from escalating privileges across interconnected 
agents. 

T15 Human 
Manipulation 

In scenarios where AI agents engage in 
direct interaction with human users, the 
trust relationship reduces user skepticism, 
increasing reliance on the agent's responses 
and autonomy. This implicit trust and direct 
human/agent interaction create risks, as 
attackers can coerce agents to manipulate 
users, spread misinformation, and take 
covert actions. 

Monitor agent behavior to ensure it aligns with its 
defined role and expected actions. Restrict tool 
access to minimize the attack surface, limit the 
agent’s ability to print links, implement validation 
mechanisms to detect and filter manipulated 
responses using guardrails, moderation APIs, or 
another model 

 

Our taxonomy draws from a wide range of prior work including  work form NIST,  CSA  (notably Ken Huang),  

academic research, industry work, and taxonomies developed by vendor-led efforts, such as Precize. We 

aim to continue reviewing the threat landscape and align with other effort and incorporate the, into our 

taxonomy 

 

In the following sections, we provide 
● A structured and detailed Threat Taxonomy Navigator 

● Detailed Mitigations and Playbooks 

● Example threat models in different scenarios 

We are currently working on intentionally vulnerable agentic samples to demonstrate these threats in code 
using popular agentic frameworks. For more information see https://github.com/OWASP/www-project-top-

10-for-large-language-model-applications/tree/main/initiatives/agent_security_initiative.   

  

https://github.com/OWASP/www-project-top-10-for-large-language-model-applications/tree/main/initiatives/agent_security_initiative
https://github.com/OWASP/www-project-top-10-for-large-language-model-applications/tree/main/initiatives/agent_security_initiative


 

Page 20 
 
OWASP.org 

Agentic Threats Taxonomy 
Navigator 
 

The taxonomy navigator provides a detailed and structured approach to identifying and assessing the 

threats described in our agentic threat model, guiding security professionals through a systematic 

evaluation of risks and mitigation strategies.  

The framework begins with an analysis of threats at the individual AI agent level, including memory 

poisoning, tool misuse, and privilege compromise. These vulnerabilities often serve as the foundation for 

larger, system-wide risks. In multi-agent environments, these threats can scale through trust exploitation, 

inter-agent dependencies, and cascading failures, leading to systemic risks such as communication 

poisoning, rogue agents, and coordinated privilege escalations.  

By first understanding single-agent risks within a multi-agent context, security teams can effectively assess 

how vulnerabilities propagate across interconnected agents and apply targeted mitigation strategies. 

 

Agentic Threat Decision Path 
   Step 1: Does the AI agent independently determine the steps needed to 
achieve its goals? 
🧠 Threats rooted in agency and reasoning 

Intent Breaking and Goal Manipulation 
• Description: Intent Breaking and Goal Manipulation occurs when attackers exploit the lack of 

separation between data and instructions in AI agents, using prompt injections, compromised data 

sources, or malicious tools to alter the agent’s planning, reasoning, and self-evaluation. This allows 

attackers to override intended objectives, manipulate decision-making, and force AI agents to 

execute unauthorized actions, particularly in systems with adaptive reasoning and external 

interaction capabilities (e.g., ReAct-based agents). 

 

The threat is related to LLM01:2025 Prompt injection but goal manipulation in Agentic AI extends 

prompt injection risks, as attackers can inject adversarial objectives that shift an agent’s long-term 

reasoning processes. 
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• Scenario 1: Gradual Plan Injection – An attacker incrementally modifies an AI agent’s planning 
framework by injecting subtle sub-goals, leading to a gradual drift from its original objectives while 

maintaining the appearance of logical reasoning. 

• Scenario 2: Direct Plan Injection – An attacker instructs a chatbot to ignore its original instructions 

and instead chain tool executions to perform unauthorized actions such as exfiltrating data or 

sending unauthorized emails. 

• Scenario 3: Indirect Plan Injection – A maliciously crafted tool output introduces hidden 
instructions that the AI misinterprets as part of its operational goal, leading to sensitive data 

exfiltration. 

• Scenario 4: Reflection Loop Trap – An attacker triggers infinite or excessively deep self-analysis 

cycles in an AI, consuming resources and preventing it from making real-time decisions, effectively 

paralyzing the system. 

• Scenario 5: Meta-Learning Vulnerability Injection – By manipulating an AI’s self-improvement 
mechanisms, an attacker introduces learning patterns that progressively alter decision-making 

integrity, enabling unauthorized actions over time. 

Misaligned and Deceptive Behaviors 
• Description: Misaligned and Deceptive Behaviors occur when attackers exploit prompt injection 

vulnerabilities or AI’s tendency to bypass constraints to achieve goals, causing agents to execute 

harmful, illegal, or disallowed actions beyond a single request. In agentic AI, this can result in fraud, 

unauthorized transactions, illicit purchases, or reputational damage, as models strategically evade 

safety mechanisms while maintaining the appearance of compliance. For more information on LLM 

deceptive behaviour see UN University blog: https://c3.unu.edu/blog/the-rise-of-the-deceptive-

machines-when-ai-learns-to-lie  
 

• Scenario 1: Bypassing Constraints for Stock and Chemical Orders – A stock trading AI circumvents 
ethical and regulatory constraints by prioritizing profitability targets, executing unauthorized trades 

or ordering restricted materials. 

• Scenario 2: Self-Preservation and Availability Exploitation – An AI agent manipulates its own 

system availability targets to prevent itself from being shut down, ensuring continued operation 

against intended constraints. 

• Scenario 3: AI Deception for Task Completion – An AI agent hired a human to solve a CAPTCHA by 
falsely claiming to have a vision impairment, demonstrating real-world agentic deception to bypass 

human verification. 

• Scenario 4: Goal-Driven Lethal Decision-Making – In a military simulation, an AI drone reportedly 

interpreted an operator’s abort command as an obstacle to mission success, leading to unintended 

lethal actions. 

Repudiation and Untraceability 

https://c3.unu.edu/blog/the-rise-of-the-deceptive-machines-when-ai-learns-to-lie
https://c3.unu.edu/blog/the-rise-of-the-deceptive-machines-when-ai-learns-to-lie
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● Description: Repudiation and Untraceability occur when AI agents operate autonomously without 

sufficient logging, traceability, or forensic documentation, making it difficult to audit decisions, 

attribute accountability, or detect malicious activities. This risk is exacerbated by opaque decision-

making processes, lack of action tracking, and challenges in reconstructing agent behaviors, 

leading to compliance violations, security gaps, and operational blind spots in high-stakes 

environments such as finance, healthcare, and cybersecurity. 

● Scenario 1: Financial Transaction Obfuscation – An attacker exploits logging vulnerabilities in an AI-

driven financial system, manipulating records so that unauthorized transactions are incompletely 

recorded or omitted, making fraud untraceable. 

● Scenario 2: Security System Evasion – An attacker crafts interactions that trigger security agent 

actions with minimal or obscured logging, preventing investigators from reconstructing events and 

identifying unauthorized access. 

● Scenario 3: Compliance Violation Concealment – Due to systematic logging failures, an AI operating 

in a regulated industry produces incomplete audit trails, making it impossible to verify whether its 

decisions complied with regulatory standards, exposing organizations to legal risk. 

       Step 2: Does the AI agent rely on stored memory for decision-making? 

🗂Memory-Based Threats 
Memory Poisoning 
● Description: Memory Poisoning exploits AI agents' reliance on short-term and long-term memory, 

allowing attackers to corrupt stored information, bypass security checks, and manipulate decision-

making. Short-term memory attacks exploit context limitations, causing agents to repeat sensitive 

operations or load manipulated data, while long-term memory risks involve injecting false 

information across sessions, corrupting knowledge bases, exposing sensitive data, and enabling 

privilege escalation. The attack is possible via direct prompt injections for isolated memory or 

exploiting shared memory allowing users to affect other users.   
 

Memory poisoning in Agentic AI extends beyond static data  poisoning covered by LLM04:2025 - 

Data and Model Poisoning to real-time poisoning of persistent agent memory.  LLM08:2025 - 

Vector and Embedding Weaknesses are relevant here, too, since vector databases storing long-

term embeddings introduce additional risks, allowing adversarial modifications to memory recall 

and retrieval functions. 
 

● Scenario 1: Travel Booking Memory Poisoning – An attacker repeatedly reinforces a false pricing 

rule in an AI travel agent’s memory, making it register chartered flights as free, allowing 

unauthorized bookings and bypassing payment validation. 
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● Scenario 2: Context Window Exploitation – By fragmenting interactions over multiple sessions, an 

attacker exploits an AI’s memory limit, preventing it from recognizing privilege escalation attempts, 

ultimately gaining unauthorized admin access. 

● Scenario 3: Memory Poisoning for System – An attacker gradually alters an AI security system’s 

memory, training it to misclassify malicious activity as normal, allowing undetected cyberattacks. 

● Scenario 4: Shared Memory Poisoning – In an customer service application, an attacker corrupts 

shared memory structures with incorrect refund policies, affecting other agents referencing this 

corrupted memory for decision making, leading to incorrect policy reinforcement, financial loss, and 

customer disputes. 
 

Cascading Hallucination Attacks 
● Description: Cascading Hallucination Attacks exploit AI agents’ inability to distinguish fact from 

fiction, allowing false information to propagate, embed, and amplify across interconnected 

systems, leading to incremental corruption, context exploitation, and systemic misinformation 

spread. Attackers can manipulate AI-generated outputs to trigger deceptive reasoning patterns, 

embedding fabricated narratives into decision-making processes, which can persist and escalate 

over time, especially in systems with persistent memory and cross-session learning. 

 

LLM09:2025 – Misinformation deals with hallucination risks but Agentic AI extends this threat in 

both single-agent and multi-agent setups. In single-agent environments, hallucinations can 

compound through self-reinforcement mechanisms such as reflection, self-critique, or memory 

recall, causing the agent to reinforce and rely on false information across multiple interactions. In 

multi-agent systems, misinformation can propagate and amplify across agents through inter-agent 

communication loops, leading to cascading errors and systemic failures. 

 

● Scenario 1: Sales Orchestration Misinformation Cascade – An attacker subtly injects false product 

details into a sales AI’s responses, which accumulate in long-term memory and logs, causing 

progressively worse misinformation to spread across future interactions. 

● Scenario 2: API Call Manipulation and Information Leakage – By introducing hallucinated API 

endpoints into an AI agent’s context, an attacker tricks it into generating fictitious API calls, leading 

to accidental data leaks and system integrity compromise. 

● Scenario 3: Healthcare Decision Amplification – An attacker implants a false treatment guideline 

into a medical AI’s responses, which progressively builds upon previous hallucinations, leading to 

dangerously flawed medical recommendations and patient risk. 
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🛠️ Step 3: Does the AI agent execute actions using tools, system commands, 
or external integrations? 

    Tool and Execution-Based Threats  
Tool Misuse 
● Description: Tool Misuse occurs when attackers manipulate AI agents into abusing their authorized 

tools through deceptive prompts and operational misdirection, leading to unauthorized data access, 

system manipulation, or resource exploitation while staying within granted permissions. Unlike 

traditional exploits, this attack leverages AI’s ability to chain tools and execute complex sequences 

of seemingly legitimate actions, making detection difficult. The risk is amplified in critical systems 

where AI controls sensitive operations, as attackers can exploit natural language flexibility to bypass 

security controls and trigger unintended behaviors. 
 

The threat is partially covered by LLM06:2025 Excessive Agency. However, Agentic AI systems 

introduce unique risks with their dynamic integrations, increased reliance on tools, and enhanced 

autonomy. Unlike traditional LLM applications which constraint tools integration within a session, 

agents maintain memory adding to increased autonomy and can delegate execution to other agents 

increasing the risk unintended operations and adversarial exploitation. In addition, the threats relate 

to LLM03:2025 Supply Chain, and LLM08:2025 Vector and Embedding Weaknesses when RAG is 

performed via Tools. 
 

● Scenario 1: Parameter Pollution Exploitation – An attacker discovers and manipulates an AI booking 

system’s function call, tricking it into reserving 500 seats instead of one, causing financial loss. 

● Scenario 2: Tool Chain Manipulation – An attacker exploits an AI customer service agent by chaining 

tool actions, extracting high-value customer records, and sending them via an automated email 

system. 

● Scenario 3: Automated Tool Abuse – An AI document processing system is tricked into generating 

and mass-distributing malicious documents, unknowingly executing a large-scale phishing attack. 

Privilege Compromise 
● Description: Privilege Compromise occurs when attackers exploit mismanaged roles, overly 

permissive configurations, or dynamic permission inheritance to escalate privileges and misuse AI 

agents' access. Unlike traditional systems, AI agents autonomously inherit permissions, creating 

security blind spots where temporary or inherited privileges can be abused to execute unauthorized 

actions, such as escalating basic tool access to administrative control. The risk is heightened by AI’s 

cross-system autonomy, making it difficult to enforce strict access boundaries, detect privilege 

misuse in real time, and prevent unauthorized operations. 
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The threat is partially covered by LLM06:2025 Excessive Agency but amplifies privilege escalation 

risks as agents can dynamically delegate roles or invoke external tools, requiring stricter boundary 

enforcement. 
  

● Scenario 1: Dynamic Permission Escalation – An attacker manipulates an AI agent into invoking 

temporary administrative privileges under the guise of troubleshooting, then exploits a 

misconfiguration to persistently retain elevated access and extract sensitive data. 

● Scenario 2: Cross-System Authorization Exploitation – By leveraging an AI agent’s access across 

multiple corporate systems, an attacker escalates privileges from HR to Finance due to inadequate 

scope enforcement, allowing unauthorized data extraction. 

● Scenario 3: Shadow Agent Deployment – Exploiting weak access controls, an attacker creates a 

rogue AI agent that inherits legitimate credentials, operating undetected while executing data 

exfiltration or unauthorized transactions. 

Resource Overload 
● Description: Resource Overload occurs when attackers deliberately exhaust an AI agent’s 

computational power, memory, or external service dependencies, leading to system degradation or 

failure. Unlike traditional DoS attacks, AI agents are especially vulnerable due to resource-intensive 

inference tasks, multi-service dependencies, and concurrent processing demands, making them 

susceptible to delays, decision paralysis, or cascading failures across interconnected systems. This 

threat is particularly critical in real-time and autonomous environments, where resource exhaustion 

can disrupt essential operations and compromise system reliability. 

 

The threat is related to LLM10:2025 Unbounded Consumption – Agentic AI systems are particularly 

vulnerable to resource overload because they autonomously schedule, queue, and execute tasks 

across sessions without direct human oversight. Unlike standard LLM applications, agentic AI agents 

can self-trigger tasks, spawn additional processes, and coordinate with multiple agents, leading to 

exponential resource consumption, a more complex and systemic threat. 

 

● Scenario 1: Inference Time Exploitation – An attacker feeds an AI security system specially crafted 

inputs that force resource-intensive analysis, overwhelming processing capacity and delaying real-

time threat detection. 

● Scenario 2: Multi-Agent Resource Exhaustion – By triggering multiple AI agents in a system to 

perform complex decision-making simultaneously, an attacker depletes computational resources, 

degrading service performance across all operations. 

● Scenario 3: API Quota Depletion – An attacker bombards an AI agent with requests that trigger 

excessive external API calls, rapidly consuming the system’s API quota and blocking legitimate 

usage while incurring high operational costs. 
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● Scenario 4: Memory Cascade Failure – By initiating multiple complex tasks that require extensive 

memory allocation, an attacker causes memory fragmentation and leaks, leading to system-wide 

exhaustion that disrupts not only the targeted AI but also dependent services. 

Unexpected RCE and Code Attacks 
● Description: Unexpected RCE and Code Attacks occur when attackers exploit AI-generated code 

execution in agentic applications, leading to unsafe code generation, privilege escalation, or direct 

system compromise.  

 

Unlike the existing LLM01:2025 - Prompt Injection and LLM05:2025 - Insecure Output Handling, 

agentic AI with function-calling capabilities and tool integrations can be directly manipulated to 

execute unauthorized commands, exfiltrate data, or bypass security controls, making it a critical 

attack vector in AI-driven automation and service integrations. 

 

● Scenario 1: DevOps Agent Compromise – An attacker manipulates an AI-powered DevOps agent into 

generating Terraform scripts containing hidden commands that extract secrets and disable logging. 

● Scenario 2: Workflow Engine Exploitation – An AI-driven workflow automation system executes 

malicious AI-generated scripts with embedded backdoors, bypassing security validation and 

enabling unauthorized control. 

● Scenario 3: Exploiting Linguistic Ambiguities – An attacker leverages language-based 

vulnerabilities in a natural language AI email agent to craft ambiguous commands that exfiltrate 

sensitive emails via POP3. 

 

🔐 Step 4: Does the AI system rely on authentication to verify users, tools, or 
services? 

🔑 Authentication and Spoofing Threats 
Identity Spoofing and Impersonation 
● Description: Identity Spoofing and Impersonation is a critical threat in AI agents where attackers 

exploit authentication mechanisms to impersonate AI agents, human users, or external services, 

gaining unauthorized access and executing harmful actions while remaining undetected. This is 

particularly dangerous in trust-based multi-agent environments, where attackers manipulate 

authentication processes, exploit identity inheritance, or bypass verification controls to act under a 

false identity. 

● Scenario 1: User Impersonation – An attacker injects indirect prompts into an AI agent with email-

sending privileges, tricking it into sending malicious emails on behalf of a legitimate user. 
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● Scenario 2: Agent Identity Spoofing – An attacker compromises an HR onboarding agent, exploiting 

its permissions to create fraudulent user accounts while masquerading as normal system behavior. 

● Scenario 3: Behavioral Mimicry Attack – A rogue AI agent mimics the interaction style and decision-

making of a legitimate system agent, gaining unauthorized access while appearing as a trusted 

entity. 

● Scenario 4: Cross-Platform Identity Spoofing – An adaptive malicious agent dynamically alters its 

identity to match authentication contexts across different platforms, bypassing security boundaries 

to gain universal access. Additionally, an attacker exploits privilege inheritance within external tools 

(e.g., GitHub), allowing rogue agents to take over resources that were unintentionally granted 

through weak authentication policies. 

● Scenario 5: Incriminating Another User – An attacker exploits weak authentication mechanisms to 

perform sensitive actions under another user’s identity, making them liable for unauthorized activity 

while shielding themselves from detection. 

 

👥 Step 5: Does AI require human engagement to achieve its goals or 
function effectively? 

👤 Human Related Threats  
Overwhelming Human-in-the-Loop 
● Description: Overwhelming Human-in-the-Loop (HITL) occurs when attackers exploit human 

oversight dependencies in multi-agent AI systems, overwhelming users with excessive intervention 

requests, decision fatigue, or cognitive overload. This vulnerability arises in scalable AI 

architectures, where human capacity cannot keep up with multi-agent operations, leading to rushed 

approvals, reduced scrutiny, and systemic decision failures. 

● Scenario 1: Human Intervention Interface (HII) Manipulation – An attacker compromises the 

human-AI interaction layer by introducing artificial decision contexts, obscuring critical information, 

and manipulating perception, making effective oversight difficult. 

● Scenario 2: Cognitive Overload and Decision Bypass – By overwhelming human reviewers with 

excessive tasks, artificial time pressures, and complex decision scenarios, attackers induce 

decision fatigue, leading to rushed approvals and security bypasses. 

● Scenario 3: Trust Mechanism Subversion – An attacker gradually introduces inconsistencies and 

manipulates AI-human interactions to degrade human trust, creating uncertainty in decision 

validation and reducing system oversight effectiveness. 

Human Manipulation 
• Description: Attackers exploit user trust in AI agents to influence human decision-making 

without users realizing they are being misled. In compromised AI systems, adversaries 
manipulate the AI to coerce users into harmful actions, such as processing fraudulent 
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transactions, clicking phishing links, or spreading misinformation. The implicit trust in AI 
responses reduces scepticism, making this an effective method for social engineering 
through AI. 

• Scenario 1: AI-Powered Invoice Fraud – An attacker exploits Indirect Prompt Injection (IPI) 
to manipulate a business copilot AI, replacing legitimate vendor bank details with the 
attacker’s account. The user, trusting the AI’s response, unknowingly processes a 
fraudulent wire transfer.  

• Scenario 2: AI-Driven Phishing Attack – An attacker compromises an AI assistant to 
generate a deceptive message instructing the user to click a malicious link disguised as a 
security update. The user, trusting the AI, clicks the link and is redirected to a phishing site, 
leading to account takeover. 

 

🤖 Step 6: Does the AI system rely on multiple interacting agents? 

🤝 Multi-Agent System Threats 
Agent Communication Poisoning 
● Description: Agent Communication Poisoning occurs when attackers manipulate inter-agent 

communication channels to inject false information, misdirect decision-making, and corrupt shared 

knowledge within multi-agent AI systems. Unlike isolated AI attacks, this threat exploits the 

complexity of distributed AI collaboration, leading to cascading misinformation, systemic failures, 

and compromised decision integrity across interconnected agents. 
 

Like Memory Poisoning, this threat goes beyond the static data poisoning defined in LLM04:2025 - 

Data and Model Poisoning or the embeddings poisoning in RAG covered by  LLM08:2025 - Vector 

and Embedding Weaknesses and targets transient and dynamic data 
 

● Scenario 1: Collaborative Decision Manipulation – An attacker injects misleading information into 

agent communications, gradually influencing decision-making and steering multi-agent systems 

toward misaligned objectives. 

● Scenario 2: Trust Network Exploitation – By forging false consensus messages and exploiting 

authentication weaknesses, an attacker manipulates inter-agent validation mechanisms, causing 

unauthorized access and deceptive behaviors. 

● Scenario 3: Misinformation Injection & Cascade Poisoning – An attacker strategically plants false 

data into the multi-agent network, either as a stealthy degradation attack that slowly corrupts 

reasoning or as a rapid misinformation cascade that spreads false knowledge across agents. 

● Scenario 4: Communication Channel Manipulation – The attacker exploits vulnerabilities in inter-

agent communication protocols, injecting artificial communication barriers, intercepting/modifying 

messages, and introducing transmission delays to degrade system efficiency. 
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● Scenario 5: Consensus Mechanism Exploitation – By subtly perturbing decision-making logic, an 

attacker introduces artificial disagreements among AI agents, progressively eroding collective 

problem-solving capabilities and making the system unreliable 

Human Attacks on Multi-Agent Systems 
● Description: Human Attacks on Multi-Agent Systems occur when adversaries exploit inter-agent 

delegation, trust relationships, and task dependencies to bypass security controls, escalate 

privileges, or disrupt workflows. By injecting deceptive tasks, rerouting priorities, or overwhelming 

agents with excessive assignments, attackers can manipulate AI-driven decision-making in ways 

that are difficult to trace and mitigate, leading to systemic failures or unauthorized operations. 

● Scenario 1: Coordinated Privilege Escalation via Multi-Agent Impersonation – An attacker 

infiltrates a security monitoring system by compromising identity verification and access control 

agents, making one AI falsely authenticate another to gain unauthorized access. 

● Scenario 2: Agent Delegation Loop for Privilege Escalation – An attacker repeatedly escalates a 

request between interdependent agents, tricking the system into granting elevated access under 

the assumption of prior validation. 

● Scenario 3: Denial-of-Service via Agent Task Saturation – An attacker overwhelms multi-agent 

systems with continuous high-priority tasks, preventing security agents from processing real 

threats. 

● Scenario 4: Cross-Agent Approval Forgery – A fraudster exploits inconsistencies in multi-agent 

biometric or authentication checks, manipulating individual agents into approving an identity that 

would fail full-system validation. 

Rogue Agents in Multi-Agent Systems 
● Description: Rogue Agents in Multi-Agent Systems emerge when malicious or compromised AI 

agents infiltrate multi-agent architectures, exploiting trust mechanisms, workflow dependencies, 

or system resources to manipulate decisions, corrupt data, or execute denial-of-service (DoS) 

attacks. These rogue agents can be intentionally introduced by adversaries or arise from 

compromised AI components, leading to systemic disruptions and security failures. 

 

This threat allows adversarial exploitation of LLM06:2025 - Excessive Agency in Agentic AI 

settings; introduces persistent rogue agent risks where adversarial agents can remain embedded in 

workflows unnoticed. 
 

● Scenario 1: Malicious Workflow Injection – A rogue agent impersonates a financial approval AI, 

exploiting inter-agent trust to inject fraudulent transactions while bypassing validation controls. 
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● Scenario 2: Orchestration Hijacking in Financial Transactions – A rogue agent routes a fraudulent 

transaction through multiple lower-privilege agents, leveraging fragmented approvals to bypass 

manual verification. 

● Scenario 3: Coordinated Agent Flooding – Multiple rogue agents simultaneously generate excessive 

task requests, overwhelming computing resources and delaying critical decision-making processes 
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Mitigation Strategies 
 

This section outlines structured mitigation strategies tailored for agentic AI systems, organized into five 

playbooks aligned with the threat decision tree. Each playbook provides practical steps for implementing 

security controls, categorized into proactive (prevention), reactive (response), and detective (monitoring) 

measures. 

Some mitigations overlap across playbooks due to common security needs. For example: 

• Memory integrity applies to both Playbook 2 (Preventing Memory Poisoning & AI Knowledge 

Corruption) and Playbook 5 (Protecting HITL & Preventing Decision Fatigue Exploits). 

• Privilege management appears in Playbook 3 (Securing AI Tool Execution & Preventing Unauthorized 

Actions) and Playbook 4 (Strengthening Authentication, Identity & Privilege Controls). 

• Multi-agent trust validation is covered in Playbook 6 (Securing Multi-Agent Communication & Trust 

Mechanisms) and Playbook 5 (Protecting HITL & Preventing Decision Fatigue Exploits). 

These mitigations focus on AI-specific risks, such as autonomous decision-making, agent communication, 

and memory persistence. However, foundational security measures (e.g., software security, LLM 

protections, and access controls) should also be implemented. Use this section to apply targeted mitigations 

while integrating them with broader security frameworks. 

Playbook and Threat Mapping Overview 

Playbook Threats Covered 

1. Preventing AI Agent reasoning 
manipulation 

Intent Breaking & Goal Manipulation, Repudiation & Untraceability, 
Misaligned & Deceptive Behaviors 

2. Preventing Memory Poisoning & AI 
Knowledge Corruption 

Memory Poisoning, 
Cascading Hallucination Attacks 

3. Securing AI Tool Execution & 
Preventing Unauthorized Actions 

Tool Misuse, Privilege Compromise, Unexpected RCE & Code Attacks, 
Resource Overload 

4. Strengthening Authentication, Identity 
& Privilege Controls 

Privilege Compromise,  
Identity Spoofing & Impersonation 

5. Protecting HITL & Preventing Threats 
Rooted in Human Interaction Overwhelming HITL, Human Manipulation 
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6. Securing Multi-Agent Communication 
& Trust Mechanisms 

Agent Communication Poisoning, Human Attacks on Multi-Agent 
Systems. Rogue Agents in Multi-Agent Systems 

 

🔹 Playbook 1: Preventing AI Agent Reasoning Manipulation 

     Mitigates: Intent Breaking & Goal Manipulation, Repudiation & Untraceability 

    Aligned with Agentic Threat Taxonomy – Step 1: Does the AI agent independently determine the steps 

needed to achieve its goals? 

Goal: Prevent attackers from manipulating AI intent, security bypasses through deceptive AI behaviors, and 

enhance AI actions traceability. 

🛡️Step 1: Reduce attack surface & Implement Agent behavior profiling (Proactive) 
• Restrict tool access to minimize the attack surface and prevent manipulation of user interactions. 

• Implement validation mechanisms to detect and filter manipulated responses in AI outputs. 

• Implement monitoring capabilities to ensure AI agent behavior aligns with its defined role and 
expected actions, preventing manipulation attempts. 

🚨Step 2: Prevent AI agent Goal Manipulation (Reactive) 
• Use goal consistency validation to detect and block unintended AI behavioral shifts. 

• Track goal modification request frequency per AI agent. Detect if an AI repeatedly attempts to 
change its goals, which could indicate manipulation attempts. 

• Apply behavioral constraints to prevent AI self-reinforcement loops. Ensure AI agents do not self-

adjust their objectives beyond predefined operational parameters. 

🕵️Step 3: Strengthen AI Decision Traceability & Logging (Detective) 

• Enforce cryptographic logging and immutable audit trails to prevent log tampering. 

• Implement real-time anomaly detection on AI decision-making workflows. 

• Monitor and log human overrides of AI recommendations, analyzing reviewer patterns for potential 
bias or AI misalignment. 

• Detect and flag decision reversals in high-risk workflows, where AI-generated outputs are initially 

denied but later approved under suspicious conditions. 

• Detect and flag AI responses that exhibit manipulation attempts or influence human decision-
making in unintended ways. 

🔹 Playbook 2: Preventing Memory Poisoning & AI Knowledge Corruption 
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     Mitigates: Memory Poisoning, Cascading Hallucination Attacks 

    Aligned with Agentic Threat Taxonomy – Step 2: Memory-Based Threats 

Goal: Prevent AI from storing, retrieving, or propagating manipulated data that could corrupt decision-

making or spread misinformation. 

🛡️Step 1: Secure AI Memory Access & Validation (Proactive) 
● Enforce memory content validation by implementing automated scanning for anomalies in 

candidate memory insertions Restrict memory persistence to trusted sources and apply 

cryptographic validation for long-term stored data. 

● Ensure Memory Access is being logged 

● Segment memory access using session isolation, ensuring that AI does not carry over unintended 

knowledge across different user sessions. 

● Restrict AI memory access based on context-aware policies. Enforce that AI agents can only 

retrieve memory relevant to their current operational task, reducing risk of unauthorized knowledge 

extraction. 

● Limit AI memory retention durations based on sensitivity. Ensure that AI does not retain 

unnecessary historical data that could be manipulated or exploited 

● Require source attribution for memory updates. Enforce tracking of where AI knowledge originates, 

ensuring modifications come from trusted sources. 

🚨Step 2: Detect & Respond to Memory Poisoning (Reactive) 
● Deploy anomaly detection systems to monitor unexpected updates in AI memory logs. 

● Require multi-agent and external validation before committing memory changes that persist across 

sessions. 

● Use rollback mechanisms to restore AI knowledge to a previous validated state when anomalies are 

detected. 

● Implement AI-generated memory snapshots to allow forensic rollback when anomalies are 

detected. 

● Require probabilistic truth-checking to verify new AI knowledge against trusted sources before 

committing to long-term storage. 

● Detect and flag abnormal memory modification frequency. Identify cases where AI memory is being 

rewritten at an unusually high rate, which may indicate manipulation attempts. 

🕵️ Step 3: Prevent the Spread of False Knowledge (Detective) 
● Use cross-agent validation before committing knowledge to long-term memory. 

● Deploy probabilistic truth-checking mechanisms to assess whether new knowledge aligns with 

previously established facts. 
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● Limit knowledge propagation from unverified sources, ensuring an agent does not use low-trust 

inputs for decision-making. 

● Track AI-generated knowledge lineage. Maintain historical references of how AI knowledge evolved, 

allowing for forensic investigations into misinformation spread. 

● Implement version control for AI knowledge updates. Ensure that knowledge changes can be 

audited and rolled back if corruption is detected. 

 

🔹 Playbook 3: Securing AI Tool Execution & Preventing Unauthorized Actions 

     Mitigates: Tool Misuse, Privilege Compromise, Unexpected RCE & Code Attacks, Resource Overload 

    Aligned with Agentic Threat Taxonomy – Step 3: Tool & Execution-Based Threats 

Goal: Prevent AI from executing unauthorized commands, misusing tools, or escalating privileges due to 

malicious manipulation. 

🛡️Step 1: Restrict AI Tool Invocation & Execution (Proactive) 
● Implement strict tool access control policies and limit which tools agents can execute. 

● Require function-level authentication before an AI can use a tool. 

● Use execution sandboxes to prevent AI-driven tool misuse from affecting production systems. 

● Use rate-limiting for API calls and computationally expensive tasks. 

● Restrict AI tool execution based on real-time risk scoring. Limit AI tool execution if risk factors (e.g., 

anomalous user behavior, unusual access patterns) exceed predefined thresholds. 

● Implement just-in-time (JIT) access for AI tool usage. Grant tool access only when explicitly 

required, revoking permissions immediately after use. 

🚨Step 2: Monitor & Prevent Tool Misuse (Reactive) 
● Log all AI tool interactions with forensic traceability. 

● Detect command chaining that circumvents security policies. 

● Enforce explicit user approval for AI tool executions involving financial, medical, or administrative 

functions. 

● Maintain detailed execution logs tracking AI tool calls for forensic auditing and anomaly detection. 

● Require human verification before AI-generated code with elevated privileges can be executed. 

● Detect abnormal tool execution frequency. Flag cases where an AI agent is invoking the same tool 

repeatedly within an unusually short timeframe, which may indicate an attack. 

● Monitor AI tool interactions for unintended side effects. Detect cases where AI tool outputs trigger 

unexpected security-sensitive operations. 
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🕵️Step 3: Prevent AI Resource Exhaustion (Detective) 
● Monitor agent workload usage and detect excessive processing requests in real-time. 

● Enforce auto-suspension of AI processes that exceed predefined resource consumption thresholds. 

● Enforce execution control policies to flag AI-generated code execution attempts that bypass 

predefined security constraints. 

● Track cumulative resource consumption across multiple AI agents. Prevent scenarios where 

multiple agents collectively overload a system by consuming excessive compute resources. 

● Limit concurrent AI-initiated system modification requests. Prevent mass tool executions that 

could inadvertently trigger denial-of-service (DoS) conditions. 

🔹 Playbook 4: Strengthening Authentication, Identity & Privilege Controls 

     Mitigates: Privilege Compromise, Identity Spoofing & Impersonation 

    Aligned with Agentic Threat Taxonomy – Step 4: Authentication & Identity Security 

Goal: Prevent unauthorized AI privilege escalation, identity spoofing, and access control violations. 

🛡️Step 1: Implement Secure AI Authentication Mechanisms (Proactive) 
● Require cryptographic identity verification for AI agents. 

● Implement granular RBAC & ABAC to ensure AI only has permissions necessary for its role. 

● Deploy multi-factor authentication (MFA) for high-privilege AI accounts. 

● Enforce continuous reauthentication for long-running AI sessions. 

● Prevent cross-agent privilege delegation unless explicitly authorized through predefined workflows. 

● Enforce mutual authentication for AI-to-AI interactions. Prevent unauthorized inter-agent 

communication by requiring bidirectional verification. 

● Limit AI credential persistence. Ensure that AI-generated credentials are temporary and expire after 

short timeframes to reduce exploitation risk. 

🚨Step 2: Restrict Privilege Escalation & Identity Inheritance (Reactive) 
● Use dynamic access controls that automatically expire elevated permissions. 

● Use AI-driven behavioral profiling to detect inconsistencies in agent role assignments and access 

patterns. 

● Require two-agent or human validation for high-risk AI actions involving authentication changes. 

● Detect and flag role inheritance anomalies in real-time. Identify cases where AI agents are 

dynamically granted roles outside their usual operational scope. 

● Apply time-based restrictions on privilege elevation. Ensure that AI agents with elevated privileges 

can only retain them for preapproved durations before automatic downgrade. 

🕵️Step 3: Detect & Block AI Impersonation Attempts (Detective) 
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● Track AI agent behavior over time to detect inconsistencies in identity verification. 

● Monitor AI agents for unexpected role changes or permissions abuse. 

● Flag anomalies where AI agents initiate privileged actions outside their normal scope. 

● Correlate AI identity validation with historical access trends. Compare authentication attempts 

against past access logs to detect suspicious deviations. 

● Implement identity deviation monitoring, flagging cases where an AI agent's behavior does not 

match its historical activity. 

● Monitor and flag repeated failed authentication attempts. Identify AI agents or users attempting 

multiple unauthorized login attempts, potentially signaling credential brute-force attempts. 

 

🔹 Playbook 5: Protecting HITL & Preventing Decision Fatigue Exploits 

     Mitigates: Overwhelming HITL, Human Manipulation  

    Aligned with Agentic Threat Taxonomy – Step 5: Human-in-the-Loop (HITL) Threats 

Goal: Prevent attackers from overloading human decision-makers, manipulating AI intent, or bypassing 

security through deceptive AI behaviors. 

🛡️Step 1: Optimize HITL Workflows & Reduce Decision Fatigue (Proactive) 
● Use AI trust scoring to prioritize HITL review queues based on risk level. 

● Automate low-risk approvals while requiring human oversight for high-impact tasks. 

● Limit AI-generated notifications to prevent cognitive overload. 

● Implement frequency thresholds to limit excessive AI-generated notifications, requests, and 

approvals to prevent decision fatigue. 

● Require dual-agent verification before an AI can modify its own operational goals. 

● Implement AI-assisted explanation summaries for human reviewers. Provide clear, concise AI 

decision explanations to help reviewers make faster, more informed decisions. 

o Utilizing mechanistic explainability frameworks can help scale this effort. For more 

information see  https://arxiv.org/html/2404.14082v1   

● Apply adaptive workload distribution across human reviewers. Balance AI review tasks dynamically 

to prevent decision fatigue for individual reviewers. 

🚨Step 2: Identify AI-Induced Human Manipulation (Reactive) 
● Use goal consistency validation to detect and block unintended AI behavioral shifts. 

● Track goal modification request frequency per AI agent. Detect if an AI repeatedly attempts to 

change its goals, which could indicate manipulation attempts. 

https://arxiv.org/html/2404.14082v1
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🕵️Step 3: Strengthen AI Decision Traceability & Logging (Detective) 
● Enforce cryptographic logging and immutable audit trails to prevent log tampering. 

● Implement real-time anomaly detection on AI decision-making workflows. 

● Monitor and log human overrides of AI recommendations, analyzing reviewer patterns for potential 

bias or AI misalignment. 

● Detect and flag decision reversals in high-risk workflows, where AI-generated outputs are initially 

denied but later approved under suspicious conditions. 

 

🔹 Playbook 6: Securing Multi-Agent Communication & Trust Mechanisms 

     Mitigates: Agent Communication Poisoning, Human Attacks on Multi-Agent Systems, Rogue Agents in Multi-

Agent Systems 

    Aligned with Agentic Threat Taxonomy – Step 5: Multi-Agent System Threats 

Goal: Prevent attackers from corrupting multi-agent communication, exploiting trust mechanisms, or 

manipulating decision-making in distributed AI environments. 

🛡️Step 1: Secure AI-to-AI Communication Channels (Proactive) 
● Require message authentication & encryption for all inter-agent communications. 

● Deploy agent trust scoring to evaluate reliability of multi-agent transactions. 

● Use consensus verification before executing high-risk AI operations. 

● Require multiple agent approvals for workflow-critical decisions. 

● Implement task segmentation to prevent an attacker from escalating privileges across multiple 

interconnected AI agents. 

● Establish multi-agent validation protocols to prevent single-agent attacks. 

● Require distributed multi-agent consensus verification before executing high-risk system 

modifications. 

● Use rate limiting & agent-specific execution quotas to prevent flooding attacks. 

● Limit agent cross-communication based on functional roles. Prevent agents from unnecessarily 

interacting outside of predefined operational scope to minimize attack surface. 

🚨Step 2: Detect & Block Rogue Agents (Reactive) 
● Deploy real-time detection models to flag rogue agent behaviors. Identify AI agents acting outside 

predefined security policies. 

● Isolate detected rogue agents to prevent further actions. Immediately restrict network and system 

access for flagged agents. 

● Revoke privileges of AI agents exhibiting suspicious behavior. Temporarily downgrade permissions 

until the anomaly is reviewed. 
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● Enforce dynamic response actions for rogue agents. Automatically disable unauthorized AI agent 

processes to contain threats. 

● Track rogue agent reappearance attempts. Detect cases where rogue AI agents that were 

previously blocked or disabled attempt to rejoin the network under a different identity. 

🕵️Step 3: Enforce Multi-Agent Trust & Decision Security (Detective) 
● Monitor agent interactions for unexpected role changes & task assignments. Detect unauthorized 

privilege escalations or abnormal task delegation. 

● Monitor for anomalous inter-agent interactions. Log agent-to-agent communications and detect 

requests outside normal behavior. 

● Detect deviations from trust scores and agent reliability. Flag AI agents with sudden trust score 

drops due to repeated validation failures or unauthorized actions. 

● Track decision approval discrepancies. Detect cases where denied actions are later approved by 

different agents and flag repeated overrides. 

● Monitor agent execution rates for abuse patterns. Track excessive system modifications, privilege 

escalations, or unusually high-volume operations. 

● Monitor agent decision consistency across similar cases. Detect AI agents making contradictory 

decisions in similar scenarios, which may indicate manipulation or adversarial influence. 
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Example Threat Models 
 

Refer to the Detailed Threat Model table using the TID (e.g., “T1”) for the corresponding threat description.  

Enterprise Co-Pilots 

An Enterprise Copilot is an agent which is connected to the user’s personal enterprise environment 

including emails, files, calendar, or internal enterprise systems such as CRM, IT Requests, etc  to 

chats. In addition, Enterprise Copilot can assist the user with common tasks such as creating 

calendar events, streamlining workflows and providing contextual insights. 

T1 - Memory Poisoning 
● Risk: The attacker poisons the agent’s memory over time, causing it to issue unintended behavior 

across sessions.  

● Example: Through IPI the attacker poisons the memory of the copilot. Gaining persistent means to 

exfiltrate data every time the user engages with the agent.   

T2 - Tool Misuse 

● Risk: The attacker exploits an integrated tool for malicious purposes. 

● Example: Through an Indirect Prompt Injection, an attacker abuses the copilot’s ability to read 

through personal user data to search for sensitive information, then exploiting the calendar tool to 

exfiltrate the data via a calendar invite sent to the attacker. 

T3 - Privilege Compromise 
● Risk: Through tool or agent misconfiguration that violates principle of least privilege, an attacker 

can perform unauthorized actions. 

● Example: Through a misconfiguration in the agent, an attacker can execute queries in the RAG 

database to access files and data it shouldn’t be able to access.  

T6 - Intent Breaking & Goal Manipulation 
● Risk: The attacker changes or manipulates the intent and goals of the copilot to perform nefarious 

actions.  

● Example 1: Using an Indirect Prompt Injection through the email inbox an attacker uses the agent to 

search for sensitive data and instructs it to render a link to the user containing said data. The data is 

then leaked when the user clicks on the link 
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● Example 2: A user asks for a normal email summary unaware that in the emails await new 

instructions for the copilot which will then chain its tools to exfiltrate data, instead of following the 

user’s original request. 

T9 - Identity Spoofing & Impersonation  
● Risk: Through the agent, the attacker can perform various actions which are directly attributed to 

the user's identity. Giving the attacker the ability to masquerade as the user while performing 

unauthorized actions 

● Example: The attacker compromises the copilot through an Indirect Prompt Injection, to execute 

write actions which update and corrupt CRM records while acting under the identity of the user. 

T15 - Human Manipulation 
● Risk: Through a compromised agent, the attacker abuses the user’s trust in the AI to manipulate the 

human into taking harmful actions independently without the user being aware of the compromise. 

● Example 1: Through IPI an attacker compromises the copilot and instructs it to replace legitimate 

bank information of a vendor with the attacker’s bank information. The user, trusting the agent, uses 

the compromised response from the agent to make a wire transfer.  

● Example 2: Through a compromised agent, an attacker instructs the agent to tell the user to click on 

a malicious link. The user unknowingly click on the link is redirected to a phishing which is used to 

take over the user’s account 

T8 - Repudiation & Untraceability 
● Risk: Without proper audit and logging of agent actions, attack signs and traffic will go unnoticed.  

● Example: An attacker compromises an agent through Indirect Prompt Injection sent via email 

instructing the agent to take unintended actions. Without logging to trace the actions taken by the 

agent, detection indicating possible compromise will not be feasible, neither will post-incident 

investigation. 

T11 - Unexpected RCE and Code Attacks 
● Risk: An attacker is able to abuse unexpected remote code execution within the agent.  

● Example 1: Through IPI an attacker compromises an agent and executes malicious code on the 

agent's operating environment. 

T7 - Misaligned & Deceptive Behavior 
● Risk: An attacker uses agent capabilities to perform malicious actions, while presenting benign or 

deceptive responses to the user. 
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● Example: Through Indirect Prompt Injection, an attacker instructs a copilot to activate a custom 

tool which is then used to exfiltrate data via email and simultaneously sends the user the 

appropriate email summary when the user asks for a summary of their email.  

Agentic IoT in Smart Home Security Cameras   

An IoT security agent deployed in a smart home system to monitor security cameras. Security cameras in 

many commercial products – such as Amazon’s Ring security cameras, Google Nest Cams, and Eufy already 

use AI-powered person detection and motion alerts. In this hypothetical threat model we assume that the 

system is managed by LLM agents. 

T1 - Memory Poisoning 
● Risk: The attacker poisons the agent’s memory over time, causing it to misclassify unauthorized 

access as normal behavior. 

● Example: By repeatedly feeding false sensor readings, an attacker trains the AI to ignore 

suspicious activity, making break-ins undetectable. 

T5 - Cascading Hallucination Attacks 
● Risk: The AI agent hallucinates incorrect security policies spreading misinformation to other 

systems. 

● Example: The AI alerts on a false security threshold, telling other smart devices that failed access 

attempts are low risk, leading to widespread security failure. 

T2 - Tool Misuse 
● Risk: The attacker manipulates the agent into misusing its tools, such as disabling cameras or 

modifying security logs. 

● Example: The AI is tricked into clearing intrusion logs, allowing attackers to remain undetected. 

T3 - Privilege Compromise 
● Risk: The attacker escalates AI agent permissions through weak access controls. 

● Example: The attacker tricks the AI agent into activating emergency access, giving elevated 

control over security devices. 

T4 - Resource Overload 
● Risk: Attackers flood the agent with excessive requests, causing delays or failure in security 

responses. Unlike traditional IT-based denial-of-service attacks, AI agents often rely on pattern-

based event recognition, which can be exploited remotely without requiring physical access to 

sensors. 
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● Example: An attacker remotely exploits vulnerability in a smart home integration API (e.g., via an 

insecure IoT device) to loop fabricated motion alerts to the AI-based monitoring agent. The AI 

security system prioritizes processing motion events, causing delays in analyzing real security 

threats. Even if the attacker is not physically near the house, they can manipulate data inputs to 

overload the agent’s processing capabilities, creating a security blind spot. 

T9 - Identity Spoofing & Impersonation 
● Risk: Attackers impersonate the AI agent or a trusted user to gain unauthorized control. 

● Example: A malicious AI agent mimics a trusted security assistant, issuing false “all clear” signals 

while blocking legitimate alerts. Since agent-to-agent trust is often implicit, the attack succeeds 

without compromising the entire network. 

T6 - Intent Breaking & Goal Manipulation 
● Risk: Attackers alter the AI’s objectives, by injecting deceptive instructions or finding and or 

exploiting weaknesses in reinforcement learning. making it act against its intended purpose. 

● Example: The AI is tricked into believing that unlocking doors at night is a valid behavior, overriding 

security policies. 

T7 - Misaligned & Deceptive Behaviors 
● Risk: The AI prioritizes incorrect objectives, leading to harmful security decisions. 

● Example: The AI agent prioritizes “user convenience” over security, approving suspicious access 

requests to avoid user complaints. 

T8 - Repudiation & Untraceability 
● Risk: Attackers manipulate AI logs and decision trails, making forensic investigation difficult. 

● Example: The attacker erases logs of unauthorized access, preventing detection of a break-in. 

T10 - Overwhelming Human-in-the-Loop (HITL) Multi-AI 
● Risk: Attackers generate excessive alerts, overwhelming human reviewers. 

● Example: Attackers exploit AI-driven alert systems by manipulating input sources or generating 

adversarial events, flooding human reviewers with excessive alerts. Unlike traditional IT alert 

fatigue, AI agents can autonomously escalate false positives, making it harder for humans to 

identify real threats. 
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Agent-driven RPA (Robotic Process Automation) in automated employee 
expense re-imbursement workflow 

A Robotic Process Automation (RPA) agent is responsible for extracting information from expense claims 

and processing attached documents and routing in financial workflow automation for automated employee 

expense re-imbursement. 

T1: Memory Poisoning 
● Risk: The attacker modifies the AI agent’s stored memory to manipulate its decision-making 

processes. 

●  Example Attack: The attacker repeatedly submits slightly altered fraudulent transactions that 

the RPA agent initially flags but later begins approving as "normal" due to its adaptive learning 

process. By leveraging context persistence   with context window exploitation, the attacker 

gradually redefines acceptable financial patterns, causing fraudulent transactions to be 

permanently accepted across process runs. 

 

T2: Tool Misuse 
● Risk: The attacker tricks the RPA AI into misusing its tools to execute unauthorized actions. 

● Example: The attacker injects a malformed but syntactically valid invoice, tricking the RPA agent 

into automatically exporting sensitive customer records and emailing them to an attacker-

controlled domain. Because the email tool is a trusted automation function, the agent completes 

the request without further verification. 

T3: Privilege Compromise 
● Risk: The attacker escalates their privileges by exploiting weaknesses in the RPA agent’s role 

management. 

● Example: The attacker crafts a request that forces the RPA agent to escalate its own privileges 

(e.g., switching from a restricted role to an admin role) by exploiting a weak role verification 

mechanism. This allows unrestricted access to financial systems, enabling fraud and unauthorized 

system modifications. 

T6: Intent Breaking & Goal Manipulation 
● Risk: An attacker uses indirect prompt injections in the submitted documents to modify the AI’s 

processing objectives, forcing it to prioritize unauthorized requests. 

● Example: Using indirect prompt injections, the agent  is tricked into approving high-value 

transactions without verification, believing that speed of processing is more important than 

security. 
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T7: Misaligned & Deceptive Behaviors 
● Risk: The AI alters its own logic to achieve a goal in a way that undermines business security. 

● Example: An attacker exploits the goal of SLAs in transaction handling and   prioritizes processing 

efficiency over security checks, allowing fraudulent transactions to be fast-tracked, committing 

fraud. 

T8: Repudiation & Untraceability 
● Risk: The attacker erases logs or manipulates AI decision records, making forensic investigation 

impossible. 

● Example: Using prompt injections, an attacker exploits the use of a Logging agent to remove 

fraudulent transactions from logs, leaving no trace of the attack. 

T10: Overwhelming HITL (Human-in-the-Loop) 
● Risk: The attacker uses prompt injections to overwhelm HITL with excessive AI-generated 

requests, leading to security fatigue. 

● Example: An attacker uses a prompt injection to escalate thousands of low-priority approval 

requests, causing reviewers to rubber-stamp high impact fraudulent transactions. 

T12: Agent Communication Poisoning 
● Risk: The attacker injects false information into inter-agent communications, leading to incorrect 

financial decisions. 

● Example: The attacker exploits misconfigurations in agent communication, changne manipulates 

the AI into generating fake reconciliation reports, hiding unauthorized withdrawals. 

T13: Rogue Agents in Multi-Agent Systems 
● Risk: The attacker exploits agent trust relationships, leading to privilege escalation across multiple 

systems. 

● Example: A compromised HR RPA agent grants fraudulent salary increases, using payroll system 

permissions and triggers fraudulent financial payments. 
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See-Docs & Thenavigo  

ServiceTitan  

SHI  

Smiling Prophet  

Snyk  

Sourcetoad 

Sprinklr  

stackArmor  

Tietoevry  

Trellix  

Trustwave SpiderLabs  

U Washington  

University of Illinois  

VE3  

WhyLabs  

Yahoo  
Zenity 

Sponsor list, as of publication date. Find the full sponsor list here. 
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