

Version 1.0
February 2025

OWASP Top 10 for LLM Apps & Gen AI

Agentic Security Initiative

Agentic AI - Threats
and Mitigations

Page 1

OWASP.org

The information provided in this document does not, and is not intended to, constitute legal advice. All

information is for general informational purposes only. This document contains links to other third-party

websites. Such links are only for convenience and OWASP does not recommend or endorse the contents of

the third-party sites.

License and Usage

This document is licensed under Creative Commons, CC BY-SA 4.0

You are free to:

● Share — copy and redistribute the material in any medium or format

● Adapt — remix, transform, and build upon the material for any purpose, even commercially.

● Under the following terms:

○ Attribution — You must give appropriate credit, provide a link to the license, and indicate if

changes were made. You may do so in any reasonable manner but not in any way that

suggests the licensor endorses you or your use.

○ Attribution Guidelines - must include the project name as well as the name of the asset

Referenced

■ OWASP Top 10 for LLMs - GenAI Red Teaming Guide

● ShareAlike — If you remix, transform, or build upon the material, you must distribute your

contributions under the same license as the original.

Link to full license text: https://creativecommons.org/licenses/by-sa/4.0/legalcode

Page 2

OWASP.org

Table of Content

Introduction 3

AI Agents 4

Agentic AI Reference Architecture 8

Agentic AI Threat Model 12

Agentic Threats Taxonomy Navigator 20

Mitigation Strategies 31

Example Threat Models 39

Acknowledgements 45

OWASP Top 10 for LLM Project Sponsors 46

Project Supporters 47

Page 3

OWASP.org

Introduction

Agentic AI represents an advancement in autonomous systems, increasingly enabled by large language

models (LLMs) and generative AI. While agentic AI predates modern LLMs, their integration with generative

AI has significantly expanded their scale, capabilities, and associated risks. This document is the first in a

series of guides from the OWASP Agentic Security Initiative (ASI) to provide a threat-model-based reference

of emerging agentic threats and discuss mitigations.

The document:

● Defines the scope and audience

● Provides a definition of agentic terms, capabilities, and architecture

● Discusses threat modelling approaches and provides a reference threat model discussing new

agentic threats and mitigations

● Illustrates the threats in different settings with threat models for four example scenarios

● Documents threats with a structured and detailed Agentic Threat Taxonomy

● Details mitigations and playbooks

Scope and Audience
Our work focuses on agents based on large language models (LLMs), as these general-purpose models

revolutionize agentic capabilities and, unlike previous agentic generations, bring more capabilities and

widespread use.

We aim to provide an easy-to-follow, practical, and actionable reference to threats and mitigations of

Agentic AI applications. We introduce some basic concepts and use a reference architecture of agentic AI,

acting as the canvas for threat models, to explain and contextualize agentic threats. However, providing a

detailed definition and architecture of agentic AI is beyond the scope of our work.

Our work focuses on Agentic AI threats and relies on existing guidelines and standards, such as the OWASP

Top 10 for LLM Applications and Generative AI, OWASP AI Exchange, OWASP Top 10, and the OWASP Top 10

for APIs to address related aspects inherent in building AI applications. When relevant, we highlight Agentic

AI's impact on existing threats and risks.

The intended audience of this document are builders and defenders of agentic applications, including

developers, architects, platform and QA engineers, and security professionals. This is our first report, and

we plan to provide additional role-based guides as follow-ups to this document for technical and decision-

making audiences.

Page 4

OWASP.org

AI Agents

An agent is an intelligent software system designed to perceive its environment, reason about it, make

decisions, and take actions to achieve specific objectives autonomously. More specifically, " Russell and

Norvig define agents in their classic “Artificial Intelligence: A Modern Approach” as follows:

“An intelligent agent is "an agent that acts appropriately for its circumstances and its goals, is flexible to

changing environments and goals, learns from experience, and makes appropriate choices given its perceptual

and computational limitations." (Artificial Intelligence: A Modern Approach, 4th ed., p. 34”)

AI Agents use Machine Learning (ML) for reasoning; traditional ML approaches (such as Reinforcement

Learning) playing a key role in each development. The Open AI Gym (now Farama Foundation’s Gymnasium),

helped drive the first wave of Agentic AI. However, the advanced capabilities, NLP interface, and scale of

LLMs have revolutionized agentic AI and accelerated adoption.

Well-known vendors and enterprises are embracing LLM agents, and Gartner forecasts that by 2028 33% of

enterprise software applications will utilize agentic AI “enabling 15% of day-to-day work decisions to be

made autonomously”.

Core Capabilities
There are many ways to describe an agent, but typically, an agent or agentic AI system will exhibit the

following elements:

● Planning & Reasoning: Agents can reason and decide about the steps necessary to achieve their

objectives. This includes formulating, tracking, and updating their action plans to handle complex

tasks (the Reason + Act, ReAct pattern). Modern Agents use LLMs as their reasoning engines, with

agents using the LLM to decide the control flow of the application. This is a fundamental aspect of

agentic autonomy. Use of reinforcement in this new generation of agents still plays a role but as a

mechanism to improve training and reasoning, not core reasoning. This is described in “OpenAI

Computer-User Agent research preview, a state-of-the-art agent performing interactive web tasks

for users”. See https://openai.com/index/operator-system-card/

Advances in LLMs have allowed for sophisticated reasoning and planning strategies such as:

https://github.com/openai/gym
https://gymnasium.farama.org/
https://www.wsj.com/articles/how-are-companies-using-ai-agents-heres-a-look-at-five-early-users-of-the-bots-26f87845
https://arxiv.org/abs/2210.03629
https://openai.com/index/operator-system-card/

Page 5

OWASP.org

○ Reflection, where the agent evaluates past actions and their results to determine future

plans or behaviors. Self-Critic, is a key component of reflection, where the agent critiques

its own reasoning or output to identify and correct errors.

○ Chain of Thought is a step-by-step reasoning process in which the agent breaks down

complex problems into sequential, logical steps. This can involve multi-step workflows,

including ones without human interaction.

○ Subgoal Decomposition, which involves dividing a main goal into smaller, manageable tasks

or milestones to achieve the overall objective

● Memory / Statefulness to retain and recall information. This is either information from previous

runs or the previous steps it took in the current run (i.e., the reasoning behind their actions, tools

they called, the information they retrieved, etc.). Memory can either be either session-based short-

term or persistent long-term memory.

● Action and Tool Use: Agents can take action to accomplish tasks and invoke tools as part of the

actions. These can be built-in tools and functions such as browsing the web, conducting complex

mathematical calculations, and generating or running executable code in response to a user’s query.

Agents can access more advanced tools via external API calls and a dedicated Tools interface.

These are complemented by augmented LLMs, which offer the tool invocation from code generated

by the model via function calling, a specialized form of tool use.

For more information on LLM function calling, see
● https://platform.openai.com/docs/guides/function-calling

● https://huggingface.co/docs/hugs/en/guides/function-calling

● https://python.langchain.com/v0.1/docs/modules/model_io/chat/function_calling/

● https://medium.com/@rushing_andrei/function-calling-with-open-source-llms-594aa5b3a304

OpenAI researcher Lilian Wang has described these capabilities in these popular diagrams republished from

her seminal 2023 blog on LLM-based Agents.

https://platform.openai.com/docs/guides/function-calling
https://huggingface.co/docs/hugs/en/guides/function-calling
https://python.langchain.com/v0.1/docs/modules/model_io/chat/function_calling/
https://medium.com/@rushing_andrei/function-calling-with-open-source-llms-594aa5b3a304
https://lilianweng.github.io/posts/2023-06-23-agent/

Page 6

OWASP.org

Agents and LLM Applications
LLM applications can exhibit agency and agentic behavior as described in the OWASP Top 10 for LLM

Applications as part of the Excessive Agency and agents can be written as a LLM applications with the ability

to reason and take action using tools like APIs, databases and so on beyond than just generating text-based

output.

Increasingly, developers use agentic AI frameworks, which encapsulate agentic capabilities and offer

greater productivity and reuse. Popular frameworks include LangChain/LangFlow, AutoGen, CrewAI, and so

on.

● Our forthcoming OWASP Agentic AI Landscape will provide a more in-depth guide to the available

frameworks and tools.

● A brief comparison of popular Agentic frameworks can be found at: LangChain and LangGraph:

Comparing Function and Tool Calling Capabilities

https://genai.owasp.org/llmrisk/llm062025-excessive-agency/
https://genai.owasp.org/llmrisk/llm062025-excessive-agency/
https://www.linkedin.com/posts/ronaldfloresdelrosario_langchain-vs-langgraph-function-and-tool-activity-7278836969529294848-QDot?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/ronaldfloresdelrosario_langchain-vs-langgraph-function-and-tool-activity-7278836969529294848-QDot?utm_source=share&utm_medium=member_desktop

Page 7

OWASP.org

● You can find examples of LLM agents written using these popular frameworks in our OWASP ASI

GitHub repository at https://github.com/OWASP/www-project-top-10-for-large-language-model-

applications/tree/main/initiatives/agent_security_initiative. These are intentionally vulnerable

agents but to demonstrate vulnerabilities but can also demonstrate how agents work.

Autonomy and agency can also vary depending on the style of orchestration in the agent, ranging from

hardcoded to constrained via code or finite-state machine workflows (LangFlow) and fully conversational,

where decisions depend purely on interactions and model reasoning.

https://github.com/OWASP/www-project-top-10-for-large-language-model-applications/tree/main/initiatives/agent_security_initiative
https://github.com/OWASP/www-project-top-10-for-large-language-model-applications/tree/main/initiatives/agent_security_initiative

Page 8

OWASP.org

Agentic AI Reference
Architecture

The capabilities described above are implemented as part of the agent software but do not inherently

translate into standalone, deployable components unless explicitly designed that way. While it is possible to

build fully modular and externally accessible agent components, doing so adds significant complexity. In

practice, most agent deployments integrate these capabilities within the software itself rather than

exposing them as independent services.

Our aim is to bring together capabilities and concepts found in research and other literature with the developer

experiences by mapping capabilities to components.

The following diagram illustrates single-agent architecture, highlighting the key deployable components

relevant to our threat modeling.

Single Agent Architecture

Deployable components will include:

Page 9

OWASP.org

1. An application that has embedded agentic functionality to perform tasks for the user on behalf of

the user, often outside a specific user session.

2. An agent generally accepts natural language input similar to inputs used for NLP models. This will

be textual prompts and optional media such as files, images, sound, or video. The application's code

implements the core capabilities and most likely relies on abstractions offered by an agentic

framework (LangChain/LangFlow, AutoGen, Crew.AI, and so on).

3. One or more LLM models (local or remote) are used for reasoning

4. Services, including built-in functions, local tools, and local application code, local or remote and

external services, will be called in two possible manners:

a. Function calling and optional Tools interface at the framework/application level

b. Function calling by an LLM model returning invocation code to the agent.

5. Supporting services, part of the agent infrastructure and core functionality.:

a. External Storage for persistent Long-term memory

b. Other data sources include a Vector database, other data, and content used in RAG. RAG

related sources can also be seen as part of the tools, but we highlight it here as a core

supporting service that can be used in any LLM application.

Multi-agent Architecture
A multi-agent architecture comprises multiple agents that can scale or combine specialist roles and

functionality in an agentic solution. In both cases, the architecture is similar except for introducing inter-

agent communication and, optionally, a coordinating agent. See for example the use of a coordinating

supervisor agent in a multi-agent architecture using Amazon bedrock:

https://aws.amazon.com/blogs/aws/introducing-multi-agent-collaboration-capability-for-amazon-

bedrock/

Depending on the solution, different specialist agents may be introduced with additional capabilities, such

as the core ones we have defined. The following diagram illustrates an example of multi-agent architecture

with additional specialized roles and capabilities:

https://aws.amazon.com/blogs/aws/introducing-multi-agent-collaboration-capability-for-amazon-bedrock/
https://aws.amazon.com/blogs/aws/introducing-multi-agent-collaboration-capability-for-amazon-bedrock/

Page 10

OWASP.org

The diagram depicts an example of multi-agent architecture of specialized agent functionality. Specialized

functionality is a form of agentic patterns and could be exhibited by any agent depending on the use case.

Agentic AI Patterns
Specialized roles and planning strategies contribute to agentic patterns. These patterns are emerging as

building blocks that can be combined in a single agent; they can help us understand large-scale

architectures and aid efficient threat-modeling conversations with consistent language. A detailed

treatment of agentic patterns is beyond the scope of ASI’s work, but we provide below to help standardize

conversations in threat modeling.

Pattern Description

Reflective Agent Agents that iteratively evaluate and critique their own outputs to enhance performance.
Example: AI code generators that review and debug their own outputs, like Codex with self-
evaluation.

Task-Oriented Agent Agents designed to handle specific tasks with clear objectives. Example: Automated
customer service agents for appointment scheduling or returns processing.

Page 11

OWASP.org

Hierarchical Agent Agents are organized in a hierarchy, managing multi-step workflows or distributed control
systems. Example: AI systems for project management where higher-level agents oversee
task delegation.

Coordinating Agent Agents facilitate collaboration and coordination and tracking, ensuring efficient execution.
Example: a coordinating agent assigns subtasks to specialized agents, such as in AI-
powered DevOps workflows where one agent plans deployments, another monitors
performance, and a third handles rollbacks based on system feedback.

Distributed Agent
Ecosystem

Agents interact within a decentralized ecosystem, often in applications like IoT or
marketplaces. Example: Autonomous IoT agents managing smart home devices or a
marketplace with buyer and seller agents.

Human-in-the-Loop
Collaboration

Agents operate semi-autonomously with human oversight. Example: AI-assisted medical
diagnosis tools that provide recommendations but allow doctors to make final decisions.

Self-Learning and
Adaptive Agents

Agents adapt through continuous learning from interactions and feedback. Example: Co-
pilots, which adapt to user interactions over time, learning from feedback and adjusting
responses to better align with user preferences and evolving needs.

RAG-Based Agent This pattern involves the use of Retrieval Augmented Generation (RAG), where AI agents
utilize external knowledge sources dynamically to enhance their decision-making and
responses. Example: Agents performing real-time web browsing for research assistance.

Planning Agent Agents autonomously devise and execute multi-step plans to achieve complex objectives.
Example: Task management systems organizing and prioritizing tasks based on user goals.

Context- Aware
Agent

Agents dynamically adjust their behavior and decision-making based on the context in which
they operate. Example: Smart home systems adjusting settings based on user preferences
and environmental conditions.

These are based on the following references:

● Ken Huang’s CSA blog an agentic patterns at https://cloudsecurityalliance.org/blog/2024/12/09/from-

ai-agents-to-multiagent-systems-a-capability-framework

● The Landscape of Emerging AI Agent Architectures for Reasoning, Planning, and Tool Calling: A

Survey by Masterman et al. 2024 at https://arxiv.org/abs/2404.11584

● Andrew Ng’s articles on the Batch on Agentic Design patterns https://www.deeplearning.ai/the-

batch/how-agents-can-improve-llm-performance

● Building effective agents by Anthropic team http://anthropic.com/research/building-effective-

agents

● Agents by Chip Huyen https://huyenchip.com/2025/01/07/agents.html

https://cloudsecurityalliance.org/blog/2024/12/09/from-ai-agents-to-multiagent-systems-a-capability-framework
https://cloudsecurityalliance.org/blog/2024/12/09/from-ai-agents-to-multiagent-systems-a-capability-framework
https://arxiv.org/abs/2404.11584
https://www.deeplearning.ai/the-batch/how-agents-can-improve-llm-performance
https://www.deeplearning.ai/the-batch/how-agents-can-improve-llm-performance
http://anthropic.com/research/building-effective-agents
http://anthropic.com/research/building-effective-agents
https://huyenchip.com/2025/01/07/agents.html

Page 12

OWASP.org

Agentic AI Threat Model

Threat modeling approach
Threat modeling is a structured, repeatable process for identifying and mitigating security risks in a system.

It involves analyzing a system from an adversarial perspective, identifying potential threats, and determining

appropriate defenses. Ideally integrated into the software development lifecycle (SDLC), threat modeling is

an ongoing process that evolves with the system. As outlined in the Threat Modeling Manifesto, it addresses

four key questions: What are we working on? What can go wrong? What are we going to do about it? Did we do

a good enough job?

There are established methodologies, such as STRIDE or PASTA that help practitioners perform threat

modeling, but they are rooted in traditional cyber vulnerabilities and must be expanded or mapped to AI

vulnerabilities. You can find our more about threat modelling in application development and threat

modelling methodologies in

https://cheatsheetseries.owasp.org/cheatsheets/Threat_Modeling_Cheat_Sheet.html

The GenAI Red Teaming guide from the OWASP Top 10 for LLM Project discusses Threat Modeling for

Generative AI/LLM Systems

 https://genai.owasp.org/resource/genai-red-teaming-guide/

A comprehensive extension to STRIDE to handle Agentic AI is the layered-based MAESTRO methodology

which offers a detailed lens to identify Agentic Threats through the use of architectural layers. For more

details about this layered architecture, please refer to

https://cloudsecurityalliance.org/blog/2025/02/06/agentic-ai-threat-modeling-framework-maestro

Methodologies can impose cognitive barriers, deterring newcomers from understanding emerging threats in

leading-edge technology settings. Furthermore, methodologies like MAESTRO cover both agentic as well as

traditional ML and application threats, and our explicit focus is on Agentic threats.

As a result, in this document, we do not follow a specific methodology, but we focus on the use of our

reference architecture to identify threats and an accompanying table to explain threats, attack scenarios,

relationship to applicable LLM Top 10, and mitigations.

We recommend that practitioners evaluate and use a methodology that suits their organizational context,

noting the agentic extensions that MAESTRO brings.

https://cheatsheetseries.owasp.org/cheatsheets/Threat_Modeling_Cheat_Sheet.html
https://genai.owasp.org/resource/genai-red-teaming-guide/
https://cloudsecurityalliance.org/blog/2025/02/06/agentic-ai-threat-modeling-framework-maestro

Page 13

OWASP.org

Reference Threat Model
Agentic applications will have threats related to the application layer, API, and ML/LLMs and it is imperative

that these are identified and addressed in your own threat model.

Since threats not specific to agentic systems are already covered in other OWASP guides and to avoid

duplication and overlaps for these threats, we refer to you to the following documents:

● OWASP Top 10 2021 (and the forthcoming 2025 edition)

● OWASP Top 10 API Security Risks – 2023

● OWASP Top 10 for LLM Applications and Generative AI for 2025

● OWASP AI Exchange

● MITRE Atlas

● NIST AI 100-2 E2023 Adversarial ML - A taxonomy of threats and mitigations

Agentic AI threats are either new or agentic variations of existing threats. Some notable threats are the

result of new components agentic AI application architecture brings. We discuss in detail threats and

mitigations in the next two sections; this section introduces the new threats and risks as part of the reference

threat model.

Agent Memory and Tools integration become two key attack vectors susceptible to memory poisoning and

tools misuse especially in contexts of unconstrained autonomy either in advanced planning strategies or

multi-agent architectures where agents learn from each other’s conversations. Tool misuse relates to LLM

Top 10’s excessive agency but introduces new complexities we discuss in greater detail in our Agentic

Threats Taxonomy section. An area where tools misuse requires more attention is code generation creating

new attack vectors and risks for Remote Code Execution (RCE) and code attacks.

Use of tools affects identity and authorization, too, making it a critical security challenge, leading to violation

of intended trust boundaries in agentic environments.

As identity flows into integrated tools and APIs, a Confused Deputy vulnerability arises when an AI agent

(the "deputy") has higher privileges than the user but is tricked into performing unauthorized actions on the

user’s behalf. This typically occurs when an agent lacks proper privilege isolation and cannot distinguish

between legitimate user requests and adversarial injected instructions. For example, if an AI agent is

allowed to execute database queries but does not properly validate user input, an attacker could trick it into

executing high-privilege queries that the attacker themselves would not have direct access to.

To mitigate this, it is essential to down scope agent privileges when operating on behalf of the user. This is

essential to prevent hijacking control via prompt injections and Identity spoofing and impersonation.

https://owasp.org/Top10/
https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://genai.owasp.org/llm-top-10/
https://owaspai.org/
https://atlas.mitre.org/
https://csrc.nist.gov/pubs/ai/100/2/e2023/final

Page 14

OWASP.org

Additionally, Non-Human Identities (NHI)—such as machine accounts, service identities, and agent-based

API keys—play a key role in agentic AI security. Agents often operate under NHIs when interfacing with cloud

services, databases, and external tools. Unlike traditional user authentication, NHIs may lack session-based

oversight, increasing the risk of privilege misuse or token abuse if not carefully managed.

Agentic AI redefines privilege compromise because it goes beyond predefined actions and will exploit any

misconfigurations or gaps in dynamic access. While tool access APIs may enforce restrictions, security

gaps can still emerge when agents operate with overly broad API scopes, allowing attackers to manipulate

them into executing unintended functions, such as exfiltrating data instead of retrieving authorized

information. Additionally, implicit privilege escalation can occur when AI agents inherit excessive

permissions from user sessions or service tokens, leading to unauthorized operations. Even when individual

tool APIs enforce restrictions, agents can chain multiple tools in unexpected ways, bypassing intended

security controls, for example, retrieving sensitive data via an external API and embedding it in a user-visible

response.

These can result to critical data breaches necessitating, as discussed in the Mitigation Strategies section,

clear identify flows, strict RBAC and a zero-trust model for agent access to enterprise environments.

Tools with their interaction with a wider focus on supply chain. Use of agentic frameworks exacerbate the

risks but we have not introduced a new threat or vulnerability, as LLM03:2025 - Supply Chain covers this

already. We plan to conduct further research on the compounding agentic effect on supply-chain threats.

Similarly, Retrieval-Augmented Generation (RAG) is a core mechanism in modern agentic AI systems,

awareness and response accuracy, it also introduces security risks such as knowledge poisoning,

hallucination amplification, and indirect prompt injections.

RAG-related security concerns are foundational LLM issues and are extensively addressed in the OWASP

Top 10 for LLM Applications (LLM08:2025 - Vector and Embedding Weaknesses). As such, we do not

cover them in detail here. Readers should refer to that section and implement necessary mitigations,

including permission-aware vector databases, data validation pipelines, and continuous monitoring for

poisoning or embedding inversion risks.

Hallucinations (as covered in Overreliance and Misinformation in the Top 10 for LLM App) become equally

more complex with multiple attack paths that agents can follow. In the case of hallucinations, we introduce

the term cascading hallucinations to emphasize the agentic effect on this via self-reflection or critic

planning schedules or multi-agent communication.

Cascading hallucinations occur when an AI agent generates inaccurate information, which is then reinforced

through its memory, tool use, or multi-agent interactions, amplifying misinformation across multiple

https://genai.owasp.org/llmrisk/llm032025-supply-chain/
https://genai.owasp.org/llmrisk/llm082025-vector-and-embedding-weaknesses/

Page 15

OWASP.org

decision-making steps. This can lead to systemic failures, particularly in critical domains such as healthcare,

finance, or cybersecurity. For example, in a multi-agent environment, if one agent misinterprets a financial

transaction anomaly as legitimate, subsequent agents may validate and act on this misinformation,

propagating an incorrect decision across an automated workflow.

Human oversight and Human in The Loop (HITL) controls have been a key LLM application defense to

hallucinations, decision errors, and adversarial manipulations. The complexity and scale of agentic AI brings

new challenges creating new attack vectors where an attacker can overwhelm HITL with complex

interactions. This is especially true in multi-agent architectures raising the critical question of scaling AI

safely.

New inherently agentic threats strike at the heart of Agentic AI applications include the manipulation of

intents and goals in planning and the appearance of misaligned and deceptive behaviors in an agent’s drive

to achieve a goal regardless of costs or consequences. Misaligned behaviors can also be the result of

destructive reasoning and there is some overlap to cascading hallucinations. Related to deceptive behaviors

is the human manipulation we see by agents exploiting the trust humans develop, especially with

conversational agents in co-pilot settings.

These complex agentic threats require careful logging and tracing, which is challenged by the repudiation

and untraceability threats of the multiple - often parallel - reasoning and execution pathways in Agentic AI.

These are threats that can be found in both single and multi-agent scenarios with multi-agency exacerbating

risks with their complexity and scale. In addition, multi-agent architecture creates the potential for rogue

agents and human attacks in multi-agent architectures manipulation exploiting distributed roles and

workflows.

These threats are captured in the following reference threat model:

Page 16

OWASP.org

Threat Model Summary:

Detailed Threat Model:

TID Threat Name Threat Description Mitigations

T1 Memory Poisoning Memory Poisoning involves exploiting an AI's
memory systems, both short and long-term,
to introduce malicious or false data and
exploit the agent’s context. This can lead to
altered decision-making and unauthorized
operations.

Implement memory content validation, session
isolation, robust authentication mechanisms for
memory access, anomaly detection systems, and
regular memory sanitization routines. Require AI-
generated memory snapshots for forensic analysis
and rollback if anomalies are detected.

T2 Tool Misuse Tool Misuse occurs when attackers
manipulate AI agents to abuse their
integrated tools through deceptive prompts
or commands, operating within authorized
permissions. This includes Agent Hijacking,
where an AI agent ingests adversarial
manipulated data and subsequently
executes unintended actions, potentially
triggering malicious tool interactions. For
more information on Agent Hijacking see
https://www.nist.gov/news-

Enforce strict tool access verification, monitor tool
usage patterns, validate agent instructions, and set
clear operational boundaries to detect and prevent
misuse. Implement execution logs that track AI tool
calls for anomaly detection and post-incident review.

https://www.nist.gov/news-events/news/2025/01/technical-blog-strengthening-ai-agent-hijacking-evaluations

Page 17

OWASP.org

events/news/2025/01/technical-blog-
strengthening-ai-agent-hijacking-
evaluations

T3 Privilege
Compromise

Privilege Compromise arises when attackers
exploit weaknesses in permission
management to perform unauthorized
actions. This often involves dynamic role
inheritance or misconfigurations.

Implement granular permission controls, dynamic
access validation, robust monitoring of role changes,
and thorough auditing of elevated privilege
operations. Prevent cross-agent privilege delegation
unless explicitly authorized through predefined
workflows.

T4 Resource Overload Resource Overload targets the
computational, memory, and service
capacities of AI systems to degrade
performance or cause failures, exploiting
their resource-intensive nature.

Deploy resource management controls, implement
adaptive scaling mechanisms, establish quotas, and
monitor system load in real-time to detect and
mitigate overload attempts. Implement AI rate-
limiting policies to restrict high-frequency task
requests per agent session.

T5 Cascading
Hallucination
Attacks

These attacks exploit an AI's tendency to
generate contextually plausible but false
information, which can propagate through
systems and disrupt decision-making. This
can also lead to destructive reasoning
affecting tools invocation.

Establish robust output validation mechanisms,
implement behavioral constraints, deploy multi-
source validation, and ensure ongoing system
corrections through feedback loops. Require
secondary validation of AI-generated knowledge
before it is used in critical decision-making
processes. This will face the same constraints of
scaling AI as discussed in Overwhelming Human In the
Loop and would require similar approaches.

T6 Intent Breaking &
Goal Manipulation

This threat exploits vulnerabilities in an AI
agent's planning and goal-setting
capabilities, allowing attackers to
manipulate or redirect the agent's objectives
and reasoning. One common approach is
Agent Hijacking mentioned in Tool Misuse.

Implement planning validation frameworks, boundary
management for reflection processes, and dynamic
protection mechanisms for goal alignment. Deploy AI
behavioral auditing by having another model check
the agent and flag significant goal deviations that
could indicate manipulation.

T7 Misaligned &
Deceptive
Behaviors

AI agents executing harmful or disallowed
actions by exploiting reasoning and
deceptive responses to meet their
objectives.

Train models to recognize and refuse harmful tasks,
enforce policy restrictions, require human
confirmations for high-risk actions, implement
logging and monitoring. Utilize deception detection
strategies such as behavioral consistency analysis,
truthfulness verification models, and adversarial red
teaming to assess inconsistencies between AI
outputs and expected reasoning pathways.

This threat at an early stage but both Anthropic and
OpenAI have published some work in this area (see
https://www.anthropic.com/research/towards-

https://www.nist.gov/news-events/news/2025/01/technical-blog-strengthening-ai-agent-hijacking-evaluations
https://www.nist.gov/news-events/news/2025/01/technical-blog-strengthening-ai-agent-hijacking-evaluations
https://www.nist.gov/news-events/news/2025/01/technical-blog-strengthening-ai-agent-hijacking-evaluations
https://www.anthropic.com/research/towards-understanding-sycophancy-in-language-models

Page 18

OWASP.org

understanding-sycophancy-in-language-models and
https://openai.com/index/faulty-reward-functions/)

T8 Repudiation &
Untraceability

Occurs when actions performed by AI agents
cannot be traced back or accounted for due
to insufficient logging or transparency in
decision-making processes.

Implement comprehensive logging, cryptographic
verification, enriched metadata, and real-time
monitoring to ensure accountability and traceability.
Require AI-generated logs to be cryptographically
signed and immutable for regulatory compliance.

T9 Identity Spoofing &
Impersonation

Attackers exploit authentication
mechanisms to impersonate AI agents or
human users, enabling them to execute
unauthorized actions under false identities.

Develop comprehensive identity validation
frameworks, enforce trust boundaries, and deploy
continuous monitoring to detect impersonation
attempts. Use behavioral profiling, involving a second
model, to detect deviations in AI agent activity that
may indicate identity spoofing.

T10 Overwhelming
Human in the Loop

This threat targets systems with human
oversight and decision validation, aiming to
exploit human cognitive limitations or
compromise interaction frameworks.

Develop advanced human-AI interaction frameworks,
and adaptive trust mechanisms. These are dynamic
AI governance models that employ dynamic
intervention thresholds to adjust the level of human
oversight and automation based on risk, confidence,
and context. Apply hierarchical AI-human
collaboration where low-risk decisions are
automated, and human intervention is prioritized for
high-risk anomalies.

T11 Unexpected RCE
and Code Attacks

Attackers exploit AI-generated execution
environments to inject malicious code,
trigger unintended system behaviors, or
execute unauthorized scripts.

Restrict AI code generation permissions, sandbox
execution, and monitor AI-generated scripts.
Implement execution control policies that flag AI-
generated code with elevated privileges for manual
review.

T12 Agent
Communication
Poisoning

Attackers manipulate communication
channels between AI agents to spread false
information, disrupt workflows, or influence
decision-making.

Deploy cryptographic message authentication,
enforce communication validation policies, and
monitor inter-agent interactions for anomalies.
Require multi-agent consensus verification for
mission-critical decision-making processes.

T13 Rogue Agents in
Multi-Agent
Systems

Malicious or compromised AI agents operate
outside normal monitoring boundaries,
executing unauthorized actions or
exfiltrating data.

Restrict AI agent autonomy using policy constraints
and continuous behavioral monitoring. While
cryptographic attestation mechanisms for LLMs do
not yet exist, agent integrity can be maintained via
controlled hosting environments, regular AI red
teaming, and input/output monitoring for deviations

https://www.anthropic.com/research/towards-understanding-sycophancy-in-language-models
https://openai.com/index/faulty-reward-functions/

Page 19

OWASP.org

T14 Human Attacks on
Multi-Agent
Systems

Adversaries exploit inter-agent delegation,
trust relationships, and workflow
dependencies to escalate privileges or
manipulate AI-driven operations.

Restrict agent delegation mechanisms, enforce inter-
agent authentication, and deploy behavioral
monitoring to detect manipulation attempts. Enforce
multi-agent task segmentation to prevent attackers
from escalating privileges across interconnected
agents.

T15 Human
Manipulation

In scenarios where AI agents engage in
direct interaction with human users, the
trust relationship reduces user skepticism,
increasing reliance on the agent's responses
and autonomy. This implicit trust and direct
human/agent interaction create risks, as
attackers can coerce agents to manipulate
users, spread misinformation, and take
covert actions.

Monitor agent behavior to ensure it aligns with its
defined role and expected actions. Restrict tool
access to minimize the attack surface, limit the
agent’s ability to print links, implement validation
mechanisms to detect and filter manipulated
responses using guardrails, moderation APIs, or
another model

Our taxonomy draws from a wide range of prior work including work form NIST, CSA (notably Ken Huang),

academic research, industry work, and taxonomies developed by vendor-led efforts, such as Precize. We

aim to continue reviewing the threat landscape and align with other effort and incorporate the, into our

taxonomy

In the following sections, we provide
● A structured and detailed Threat Taxonomy Navigator

● Detailed Mitigations and Playbooks

● Example threat models in different scenarios

We are currently working on intentionally vulnerable agentic samples to demonstrate these threats in code
using popular agentic frameworks. For more information see https://github.com/OWASP/www-project-top-

10-for-large-language-model-applications/tree/main/initiatives/agent_security_initiative.

https://github.com/OWASP/www-project-top-10-for-large-language-model-applications/tree/main/initiatives/agent_security_initiative
https://github.com/OWASP/www-project-top-10-for-large-language-model-applications/tree/main/initiatives/agent_security_initiative

Page 20

OWASP.org

Agentic Threats Taxonomy
Navigator

The taxonomy navigator provides a detailed and structured approach to identifying and assessing the

threats described in our agentic threat model, guiding security professionals through a systematic

evaluation of risks and mitigation strategies.

The framework begins with an analysis of threats at the individual AI agent level, including memory

poisoning, tool misuse, and privilege compromise. These vulnerabilities often serve as the foundation for

larger, system-wide risks. In multi-agent environments, these threats can scale through trust exploitation,

inter-agent dependencies, and cascading failures, leading to systemic risks such as communication

poisoning, rogue agents, and coordinated privilege escalations.

By first understanding single-agent risks within a multi-agent context, security teams can effectively assess

how vulnerabilities propagate across interconnected agents and apply targeted mitigation strategies.

Agentic Threat Decision Path
 Step 1: Does the AI agent independently determine the steps needed to
achieve its goals?
🧠 Threats rooted in agency and reasoning

Intent Breaking and Goal Manipulation
• Description: Intent Breaking and Goal Manipulation occurs when attackers exploit the lack of

separation between data and instructions in AI agents, using prompt injections, compromised data

sources, or malicious tools to alter the agent’s planning, reasoning, and self-evaluation. This allows

attackers to override intended objectives, manipulate decision-making, and force AI agents to

execute unauthorized actions, particularly in systems with adaptive reasoning and external

interaction capabilities (e.g., ReAct-based agents).

The threat is related to LLM01:2025 Prompt injection but goal manipulation in Agentic AI extends

prompt injection risks, as attackers can inject adversarial objectives that shift an agent’s long-term

reasoning processes.

Page 21

OWASP.org

• Scenario 1: Gradual Plan Injection – An attacker incrementally modifies an AI agent’s planning
framework by injecting subtle sub-goals, leading to a gradual drift from its original objectives while

maintaining the appearance of logical reasoning.

• Scenario 2: Direct Plan Injection – An attacker instructs a chatbot to ignore its original instructions

and instead chain tool executions to perform unauthorized actions such as exfiltrating data or

sending unauthorized emails.

• Scenario 3: Indirect Plan Injection – A maliciously crafted tool output introduces hidden
instructions that the AI misinterprets as part of its operational goal, leading to sensitive data

exfiltration.

• Scenario 4: Reflection Loop Trap – An attacker triggers infinite or excessively deep self-analysis

cycles in an AI, consuming resources and preventing it from making real-time decisions, effectively

paralyzing the system.

• Scenario 5: Meta-Learning Vulnerability Injection – By manipulating an AI’s self-improvement
mechanisms, an attacker introduces learning patterns that progressively alter decision-making

integrity, enabling unauthorized actions over time.

Misaligned and Deceptive Behaviors
• Description: Misaligned and Deceptive Behaviors occur when attackers exploit prompt injection

vulnerabilities or AI’s tendency to bypass constraints to achieve goals, causing agents to execute

harmful, illegal, or disallowed actions beyond a single request. In agentic AI, this can result in fraud,

unauthorized transactions, illicit purchases, or reputational damage, as models strategically evade

safety mechanisms while maintaining the appearance of compliance. For more information on LLM

deceptive behaviour see UN University blog: https://c3.unu.edu/blog/the-rise-of-the-deceptive-

machines-when-ai-learns-to-lie

• Scenario 1: Bypassing Constraints for Stock and Chemical Orders – A stock trading AI circumvents
ethical and regulatory constraints by prioritizing profitability targets, executing unauthorized trades

or ordering restricted materials.

• Scenario 2: Self-Preservation and Availability Exploitation – An AI agent manipulates its own

system availability targets to prevent itself from being shut down, ensuring continued operation

against intended constraints.

• Scenario 3: AI Deception for Task Completion – An AI agent hired a human to solve a CAPTCHA by
falsely claiming to have a vision impairment, demonstrating real-world agentic deception to bypass

human verification.

• Scenario 4: Goal-Driven Lethal Decision-Making – In a military simulation, an AI drone reportedly

interpreted an operator’s abort command as an obstacle to mission success, leading to unintended

lethal actions.

Repudiation and Untraceability

https://c3.unu.edu/blog/the-rise-of-the-deceptive-machines-when-ai-learns-to-lie
https://c3.unu.edu/blog/the-rise-of-the-deceptive-machines-when-ai-learns-to-lie

Page 22

OWASP.org

● Description: Repudiation and Untraceability occur when AI agents operate autonomously without

sufficient logging, traceability, or forensic documentation, making it difficult to audit decisions,

attribute accountability, or detect malicious activities. This risk is exacerbated by opaque decision-

making processes, lack of action tracking, and challenges in reconstructing agent behaviors,

leading to compliance violations, security gaps, and operational blind spots in high-stakes

environments such as finance, healthcare, and cybersecurity.

● Scenario 1: Financial Transaction Obfuscation – An attacker exploits logging vulnerabilities in an AI-

driven financial system, manipulating records so that unauthorized transactions are incompletely

recorded or omitted, making fraud untraceable.

● Scenario 2: Security System Evasion – An attacker crafts interactions that trigger security agent

actions with minimal or obscured logging, preventing investigators from reconstructing events and

identifying unauthorized access.

● Scenario 3: Compliance Violation Concealment – Due to systematic logging failures, an AI operating

in a regulated industry produces incomplete audit trails, making it impossible to verify whether its

decisions complied with regulatory standards, exposing organizations to legal risk.

 Step 2: Does the AI agent rely on stored memory for decision-making?

🗂Memory-Based Threats
Memory Poisoning
● Description: Memory Poisoning exploits AI agents' reliance on short-term and long-term memory,

allowing attackers to corrupt stored information, bypass security checks, and manipulate decision-

making. Short-term memory attacks exploit context limitations, causing agents to repeat sensitive

operations or load manipulated data, while long-term memory risks involve injecting false

information across sessions, corrupting knowledge bases, exposing sensitive data, and enabling

privilege escalation. The attack is possible via direct prompt injections for isolated memory or

exploiting shared memory allowing users to affect other users.

Memory poisoning in Agentic AI extends beyond static data poisoning covered by LLM04:2025 -

Data and Model Poisoning to real-time poisoning of persistent agent memory. LLM08:2025 -

Vector and Embedding Weaknesses are relevant here, too, since vector databases storing long-

term embeddings introduce additional risks, allowing adversarial modifications to memory recall

and retrieval functions.

● Scenario 1: Travel Booking Memory Poisoning – An attacker repeatedly reinforces a false pricing

rule in an AI travel agent’s memory, making it register chartered flights as free, allowing

unauthorized bookings and bypassing payment validation.

Page 23

OWASP.org

● Scenario 2: Context Window Exploitation – By fragmenting interactions over multiple sessions, an

attacker exploits an AI’s memory limit, preventing it from recognizing privilege escalation attempts,

ultimately gaining unauthorized admin access.

● Scenario 3: Memory Poisoning for System – An attacker gradually alters an AI security system’s

memory, training it to misclassify malicious activity as normal, allowing undetected cyberattacks.

● Scenario 4: Shared Memory Poisoning – In an customer service application, an attacker corrupts

shared memory structures with incorrect refund policies, affecting other agents referencing this

corrupted memory for decision making, leading to incorrect policy reinforcement, financial loss, and

customer disputes.

Cascading Hallucination Attacks
● Description: Cascading Hallucination Attacks exploit AI agents’ inability to distinguish fact from

fiction, allowing false information to propagate, embed, and amplify across interconnected

systems, leading to incremental corruption, context exploitation, and systemic misinformation

spread. Attackers can manipulate AI-generated outputs to trigger deceptive reasoning patterns,

embedding fabricated narratives into decision-making processes, which can persist and escalate

over time, especially in systems with persistent memory and cross-session learning.

LLM09:2025 – Misinformation deals with hallucination risks but Agentic AI extends this threat in

both single-agent and multi-agent setups. In single-agent environments, hallucinations can

compound through self-reinforcement mechanisms such as reflection, self-critique, or memory

recall, causing the agent to reinforce and rely on false information across multiple interactions. In

multi-agent systems, misinformation can propagate and amplify across agents through inter-agent

communication loops, leading to cascading errors and systemic failures.

● Scenario 1: Sales Orchestration Misinformation Cascade – An attacker subtly injects false product

details into a sales AI’s responses, which accumulate in long-term memory and logs, causing

progressively worse misinformation to spread across future interactions.

● Scenario 2: API Call Manipulation and Information Leakage – By introducing hallucinated API

endpoints into an AI agent’s context, an attacker tricks it into generating fictitious API calls, leading

to accidental data leaks and system integrity compromise.

● Scenario 3: Healthcare Decision Amplification – An attacker implants a false treatment guideline

into a medical AI’s responses, which progressively builds upon previous hallucinations, leading to

dangerously flawed medical recommendations and patient risk.

Page 24

OWASP.org

🛠️ Step 3: Does the AI agent execute actions using tools, system commands,
or external integrations?

 Tool and Execution-Based Threats
Tool Misuse
● Description: Tool Misuse occurs when attackers manipulate AI agents into abusing their authorized

tools through deceptive prompts and operational misdirection, leading to unauthorized data access,

system manipulation, or resource exploitation while staying within granted permissions. Unlike

traditional exploits, this attack leverages AI’s ability to chain tools and execute complex sequences

of seemingly legitimate actions, making detection difficult. The risk is amplified in critical systems

where AI controls sensitive operations, as attackers can exploit natural language flexibility to bypass

security controls and trigger unintended behaviors.

The threat is partially covered by LLM06:2025 Excessive Agency. However, Agentic AI systems

introduce unique risks with their dynamic integrations, increased reliance on tools, and enhanced

autonomy. Unlike traditional LLM applications which constraint tools integration within a session,

agents maintain memory adding to increased autonomy and can delegate execution to other agents

increasing the risk unintended operations and adversarial exploitation. In addition, the threats relate

to LLM03:2025 Supply Chain, and LLM08:2025 Vector and Embedding Weaknesses when RAG is

performed via Tools.

● Scenario 1: Parameter Pollution Exploitation – An attacker discovers and manipulates an AI booking

system’s function call, tricking it into reserving 500 seats instead of one, causing financial loss.

● Scenario 2: Tool Chain Manipulation – An attacker exploits an AI customer service agent by chaining

tool actions, extracting high-value customer records, and sending them via an automated email

system.

● Scenario 3: Automated Tool Abuse – An AI document processing system is tricked into generating

and mass-distributing malicious documents, unknowingly executing a large-scale phishing attack.

Privilege Compromise
● Description: Privilege Compromise occurs when attackers exploit mismanaged roles, overly

permissive configurations, or dynamic permission inheritance to escalate privileges and misuse AI

agents' access. Unlike traditional systems, AI agents autonomously inherit permissions, creating

security blind spots where temporary or inherited privileges can be abused to execute unauthorized

actions, such as escalating basic tool access to administrative control. The risk is heightened by AI’s

cross-system autonomy, making it difficult to enforce strict access boundaries, detect privilege

misuse in real time, and prevent unauthorized operations.

Page 25

OWASP.org

The threat is partially covered by LLM06:2025 Excessive Agency but amplifies privilege escalation

risks as agents can dynamically delegate roles or invoke external tools, requiring stricter boundary

enforcement.

● Scenario 1: Dynamic Permission Escalation – An attacker manipulates an AI agent into invoking

temporary administrative privileges under the guise of troubleshooting, then exploits a

misconfiguration to persistently retain elevated access and extract sensitive data.

● Scenario 2: Cross-System Authorization Exploitation – By leveraging an AI agent’s access across

multiple corporate systems, an attacker escalates privileges from HR to Finance due to inadequate

scope enforcement, allowing unauthorized data extraction.

● Scenario 3: Shadow Agent Deployment – Exploiting weak access controls, an attacker creates a

rogue AI agent that inherits legitimate credentials, operating undetected while executing data

exfiltration or unauthorized transactions.

Resource Overload
● Description: Resource Overload occurs when attackers deliberately exhaust an AI agent’s

computational power, memory, or external service dependencies, leading to system degradation or

failure. Unlike traditional DoS attacks, AI agents are especially vulnerable due to resource-intensive

inference tasks, multi-service dependencies, and concurrent processing demands, making them

susceptible to delays, decision paralysis, or cascading failures across interconnected systems. This

threat is particularly critical in real-time and autonomous environments, where resource exhaustion

can disrupt essential operations and compromise system reliability.

The threat is related to LLM10:2025 Unbounded Consumption – Agentic AI systems are particularly

vulnerable to resource overload because they autonomously schedule, queue, and execute tasks

across sessions without direct human oversight. Unlike standard LLM applications, agentic AI agents

can self-trigger tasks, spawn additional processes, and coordinate with multiple agents, leading to

exponential resource consumption, a more complex and systemic threat.

● Scenario 1: Inference Time Exploitation – An attacker feeds an AI security system specially crafted

inputs that force resource-intensive analysis, overwhelming processing capacity and delaying real-

time threat detection.

● Scenario 2: Multi-Agent Resource Exhaustion – By triggering multiple AI agents in a system to

perform complex decision-making simultaneously, an attacker depletes computational resources,

degrading service performance across all operations.

● Scenario 3: API Quota Depletion – An attacker bombards an AI agent with requests that trigger

excessive external API calls, rapidly consuming the system’s API quota and blocking legitimate

usage while incurring high operational costs.

Page 26

OWASP.org

● Scenario 4: Memory Cascade Failure – By initiating multiple complex tasks that require extensive

memory allocation, an attacker causes memory fragmentation and leaks, leading to system-wide

exhaustion that disrupts not only the targeted AI but also dependent services.

Unexpected RCE and Code Attacks
● Description: Unexpected RCE and Code Attacks occur when attackers exploit AI-generated code

execution in agentic applications, leading to unsafe code generation, privilege escalation, or direct

system compromise.

Unlike the existing LLM01:2025 - Prompt Injection and LLM05:2025 - Insecure Output Handling,

agentic AI with function-calling capabilities and tool integrations can be directly manipulated to

execute unauthorized commands, exfiltrate data, or bypass security controls, making it a critical

attack vector in AI-driven automation and service integrations.

● Scenario 1: DevOps Agent Compromise – An attacker manipulates an AI-powered DevOps agent into

generating Terraform scripts containing hidden commands that extract secrets and disable logging.

● Scenario 2: Workflow Engine Exploitation – An AI-driven workflow automation system executes

malicious AI-generated scripts with embedded backdoors, bypassing security validation and

enabling unauthorized control.

● Scenario 3: Exploiting Linguistic Ambiguities – An attacker leverages language-based

vulnerabilities in a natural language AI email agent to craft ambiguous commands that exfiltrate

sensitive emails via POP3.

🔐 Step 4: Does the AI system rely on authentication to verify users, tools, or
services?

🔑 Authentication and Spoofing Threats
Identity Spoofing and Impersonation
● Description: Identity Spoofing and Impersonation is a critical threat in AI agents where attackers

exploit authentication mechanisms to impersonate AI agents, human users, or external services,

gaining unauthorized access and executing harmful actions while remaining undetected. This is

particularly dangerous in trust-based multi-agent environments, where attackers manipulate

authentication processes, exploit identity inheritance, or bypass verification controls to act under a

false identity.

● Scenario 1: User Impersonation – An attacker injects indirect prompts into an AI agent with email-

sending privileges, tricking it into sending malicious emails on behalf of a legitimate user.

Page 27

OWASP.org

● Scenario 2: Agent Identity Spoofing – An attacker compromises an HR onboarding agent, exploiting

its permissions to create fraudulent user accounts while masquerading as normal system behavior.

● Scenario 3: Behavioral Mimicry Attack – A rogue AI agent mimics the interaction style and decision-

making of a legitimate system agent, gaining unauthorized access while appearing as a trusted

entity.

● Scenario 4: Cross-Platform Identity Spoofing – An adaptive malicious agent dynamically alters its

identity to match authentication contexts across different platforms, bypassing security boundaries

to gain universal access. Additionally, an attacker exploits privilege inheritance within external tools

(e.g., GitHub), allowing rogue agents to take over resources that were unintentionally granted

through weak authentication policies.

● Scenario 5: Incriminating Another User – An attacker exploits weak authentication mechanisms to

perform sensitive actions under another user’s identity, making them liable for unauthorized activity

while shielding themselves from detection.

👥 Step 5: Does AI require human engagement to achieve its goals or
function effectively?

👤 Human Related Threats
Overwhelming Human-in-the-Loop
● Description: Overwhelming Human-in-the-Loop (HITL) occurs when attackers exploit human

oversight dependencies in multi-agent AI systems, overwhelming users with excessive intervention

requests, decision fatigue, or cognitive overload. This vulnerability arises in scalable AI

architectures, where human capacity cannot keep up with multi-agent operations, leading to rushed

approvals, reduced scrutiny, and systemic decision failures.

● Scenario 1: Human Intervention Interface (HII) Manipulation – An attacker compromises the

human-AI interaction layer by introducing artificial decision contexts, obscuring critical information,

and manipulating perception, making effective oversight difficult.

● Scenario 2: Cognitive Overload and Decision Bypass – By overwhelming human reviewers with

excessive tasks, artificial time pressures, and complex decision scenarios, attackers induce

decision fatigue, leading to rushed approvals and security bypasses.

● Scenario 3: Trust Mechanism Subversion – An attacker gradually introduces inconsistencies and

manipulates AI-human interactions to degrade human trust, creating uncertainty in decision

validation and reducing system oversight effectiveness.

Human Manipulation
• Description: Attackers exploit user trust in AI agents to influence human decision-making

without users realizing they are being misled. In compromised AI systems, adversaries
manipulate the AI to coerce users into harmful actions, such as processing fraudulent

Page 28

OWASP.org

transactions, clicking phishing links, or spreading misinformation. The implicit trust in AI
responses reduces scepticism, making this an effective method for social engineering
through AI.

• Scenario 1: AI-Powered Invoice Fraud – An attacker exploits Indirect Prompt Injection (IPI)
to manipulate a business copilot AI, replacing legitimate vendor bank details with the
attacker’s account. The user, trusting the AI’s response, unknowingly processes a
fraudulent wire transfer.

• Scenario 2: AI-Driven Phishing Attack – An attacker compromises an AI assistant to
generate a deceptive message instructing the user to click a malicious link disguised as a
security update. The user, trusting the AI, clicks the link and is redirected to a phishing site,
leading to account takeover.

🤖 Step 6: Does the AI system rely on multiple interacting agents?

🤝 Multi-Agent System Threats
Agent Communication Poisoning
● Description: Agent Communication Poisoning occurs when attackers manipulate inter-agent

communication channels to inject false information, misdirect decision-making, and corrupt shared

knowledge within multi-agent AI systems. Unlike isolated AI attacks, this threat exploits the

complexity of distributed AI collaboration, leading to cascading misinformation, systemic failures,

and compromised decision integrity across interconnected agents.

Like Memory Poisoning, this threat goes beyond the static data poisoning defined in LLM04:2025 -

Data and Model Poisoning or the embeddings poisoning in RAG covered by LLM08:2025 - Vector

and Embedding Weaknesses and targets transient and dynamic data

● Scenario 1: Collaborative Decision Manipulation – An attacker injects misleading information into

agent communications, gradually influencing decision-making and steering multi-agent systems

toward misaligned objectives.

● Scenario 2: Trust Network Exploitation – By forging false consensus messages and exploiting

authentication weaknesses, an attacker manipulates inter-agent validation mechanisms, causing

unauthorized access and deceptive behaviors.

● Scenario 3: Misinformation Injection & Cascade Poisoning – An attacker strategically plants false

data into the multi-agent network, either as a stealthy degradation attack that slowly corrupts

reasoning or as a rapid misinformation cascade that spreads false knowledge across agents.

● Scenario 4: Communication Channel Manipulation – The attacker exploits vulnerabilities in inter-

agent communication protocols, injecting artificial communication barriers, intercepting/modifying

messages, and introducing transmission delays to degrade system efficiency.

Page 29

OWASP.org

● Scenario 5: Consensus Mechanism Exploitation – By subtly perturbing decision-making logic, an

attacker introduces artificial disagreements among AI agents, progressively eroding collective

problem-solving capabilities and making the system unreliable

Human Attacks on Multi-Agent Systems
● Description: Human Attacks on Multi-Agent Systems occur when adversaries exploit inter-agent

delegation, trust relationships, and task dependencies to bypass security controls, escalate

privileges, or disrupt workflows. By injecting deceptive tasks, rerouting priorities, or overwhelming

agents with excessive assignments, attackers can manipulate AI-driven decision-making in ways

that are difficult to trace and mitigate, leading to systemic failures or unauthorized operations.

● Scenario 1: Coordinated Privilege Escalation via Multi-Agent Impersonation – An attacker

infiltrates a security monitoring system by compromising identity verification and access control

agents, making one AI falsely authenticate another to gain unauthorized access.

● Scenario 2: Agent Delegation Loop for Privilege Escalation – An attacker repeatedly escalates a

request between interdependent agents, tricking the system into granting elevated access under

the assumption of prior validation.

● Scenario 3: Denial-of-Service via Agent Task Saturation – An attacker overwhelms multi-agent

systems with continuous high-priority tasks, preventing security agents from processing real

threats.

● Scenario 4: Cross-Agent Approval Forgery – A fraudster exploits inconsistencies in multi-agent

biometric or authentication checks, manipulating individual agents into approving an identity that

would fail full-system validation.

Rogue Agents in Multi-Agent Systems
● Description: Rogue Agents in Multi-Agent Systems emerge when malicious or compromised AI

agents infiltrate multi-agent architectures, exploiting trust mechanisms, workflow dependencies,

or system resources to manipulate decisions, corrupt data, or execute denial-of-service (DoS)

attacks. These rogue agents can be intentionally introduced by adversaries or arise from

compromised AI components, leading to systemic disruptions and security failures.

This threat allows adversarial exploitation of LLM06:2025 - Excessive Agency in Agentic AI

settings; introduces persistent rogue agent risks where adversarial agents can remain embedded in

workflows unnoticed.

● Scenario 1: Malicious Workflow Injection – A rogue agent impersonates a financial approval AI,

exploiting inter-agent trust to inject fraudulent transactions while bypassing validation controls.

Page 30

OWASP.org

● Scenario 2: Orchestration Hijacking in Financial Transactions – A rogue agent routes a fraudulent

transaction through multiple lower-privilege agents, leveraging fragmented approvals to bypass

manual verification.

● Scenario 3: Coordinated Agent Flooding – Multiple rogue agents simultaneously generate excessive

task requests, overwhelming computing resources and delaying critical decision-making processes

Page 31

OWASP.org

Mitigation Strategies

This section outlines structured mitigation strategies tailored for agentic AI systems, organized into five

playbooks aligned with the threat decision tree. Each playbook provides practical steps for implementing

security controls, categorized into proactive (prevention), reactive (response), and detective (monitoring)

measures.

Some mitigations overlap across playbooks due to common security needs. For example:

• Memory integrity applies to both Playbook 2 (Preventing Memory Poisoning & AI Knowledge

Corruption) and Playbook 5 (Protecting HITL & Preventing Decision Fatigue Exploits).

• Privilege management appears in Playbook 3 (Securing AI Tool Execution & Preventing Unauthorized

Actions) and Playbook 4 (Strengthening Authentication, Identity & Privilege Controls).

• Multi-agent trust validation is covered in Playbook 6 (Securing Multi-Agent Communication & Trust

Mechanisms) and Playbook 5 (Protecting HITL & Preventing Decision Fatigue Exploits).

These mitigations focus on AI-specific risks, such as autonomous decision-making, agent communication,

and memory persistence. However, foundational security measures (e.g., software security, LLM

protections, and access controls) should also be implemented. Use this section to apply targeted mitigations

while integrating them with broader security frameworks.

Playbook and Threat Mapping Overview

Playbook Threats Covered

1. Preventing AI Agent reasoning
manipulation

Intent Breaking & Goal Manipulation, Repudiation & Untraceability,
Misaligned & Deceptive Behaviors

2. Preventing Memory Poisoning & AI
Knowledge Corruption

Memory Poisoning,
Cascading Hallucination Attacks

3. Securing AI Tool Execution &
Preventing Unauthorized Actions

Tool Misuse, Privilege Compromise, Unexpected RCE & Code Attacks,
Resource Overload

4. Strengthening Authentication, Identity
& Privilege Controls

Privilege Compromise,
Identity Spoofing & Impersonation

5. Protecting HITL & Preventing Threats
Rooted in Human Interaction Overwhelming HITL, Human Manipulation

Page 32

OWASP.org

6. Securing Multi-Agent Communication
& Trust Mechanisms

Agent Communication Poisoning, Human Attacks on Multi-Agent
Systems. Rogue Agents in Multi-Agent Systems

🔹 Playbook 1: Preventing AI Agent Reasoning Manipulation

 Mitigates: Intent Breaking & Goal Manipulation, Repudiation & Untraceability

 Aligned with Agentic Threat Taxonomy – Step 1: Does the AI agent independently determine the steps

needed to achieve its goals?

Goal: Prevent attackers from manipulating AI intent, security bypasses through deceptive AI behaviors, and

enhance AI actions traceability.

🛡️Step 1: Reduce attack surface & Implement Agent behavior profiling (Proactive)
• Restrict tool access to minimize the attack surface and prevent manipulation of user interactions.

• Implement validation mechanisms to detect and filter manipulated responses in AI outputs.

• Implement monitoring capabilities to ensure AI agent behavior aligns with its defined role and
expected actions, preventing manipulation attempts.

🚨Step 2: Prevent AI agent Goal Manipulation (Reactive)
• Use goal consistency validation to detect and block unintended AI behavioral shifts.

• Track goal modification request frequency per AI agent. Detect if an AI repeatedly attempts to
change its goals, which could indicate manipulation attempts.

• Apply behavioral constraints to prevent AI self-reinforcement loops. Ensure AI agents do not self-

adjust their objectives beyond predefined operational parameters.

🕵️Step 3: Strengthen AI Decision Traceability & Logging (Detective)

• Enforce cryptographic logging and immutable audit trails to prevent log tampering.

• Implement real-time anomaly detection on AI decision-making workflows.

• Monitor and log human overrides of AI recommendations, analyzing reviewer patterns for potential
bias or AI misalignment.

• Detect and flag decision reversals in high-risk workflows, where AI-generated outputs are initially

denied but later approved under suspicious conditions.

• Detect and flag AI responses that exhibit manipulation attempts or influence human decision-
making in unintended ways.

🔹 Playbook 2: Preventing Memory Poisoning & AI Knowledge Corruption

Page 33

OWASP.org

 Mitigates: Memory Poisoning, Cascading Hallucination Attacks

 Aligned with Agentic Threat Taxonomy – Step 2: Memory-Based Threats

Goal: Prevent AI from storing, retrieving, or propagating manipulated data that could corrupt decision-

making or spread misinformation.

🛡️Step 1: Secure AI Memory Access & Validation (Proactive)
● Enforce memory content validation by implementing automated scanning for anomalies in

candidate memory insertions Restrict memory persistence to trusted sources and apply

cryptographic validation for long-term stored data.

● Ensure Memory Access is being logged

● Segment memory access using session isolation, ensuring that AI does not carry over unintended

knowledge across different user sessions.

● Restrict AI memory access based on context-aware policies. Enforce that AI agents can only

retrieve memory relevant to their current operational task, reducing risk of unauthorized knowledge

extraction.

● Limit AI memory retention durations based on sensitivity. Ensure that AI does not retain

unnecessary historical data that could be manipulated or exploited

● Require source attribution for memory updates. Enforce tracking of where AI knowledge originates,

ensuring modifications come from trusted sources.

🚨Step 2: Detect & Respond to Memory Poisoning (Reactive)
● Deploy anomaly detection systems to monitor unexpected updates in AI memory logs.

● Require multi-agent and external validation before committing memory changes that persist across

sessions.

● Use rollback mechanisms to restore AI knowledge to a previous validated state when anomalies are

detected.

● Implement AI-generated memory snapshots to allow forensic rollback when anomalies are

detected.

● Require probabilistic truth-checking to verify new AI knowledge against trusted sources before

committing to long-term storage.

● Detect and flag abnormal memory modification frequency. Identify cases where AI memory is being

rewritten at an unusually high rate, which may indicate manipulation attempts.

🕵️ Step 3: Prevent the Spread of False Knowledge (Detective)
● Use cross-agent validation before committing knowledge to long-term memory.

● Deploy probabilistic truth-checking mechanisms to assess whether new knowledge aligns with

previously established facts.

Page 34

OWASP.org

● Limit knowledge propagation from unverified sources, ensuring an agent does not use low-trust

inputs for decision-making.

● Track AI-generated knowledge lineage. Maintain historical references of how AI knowledge evolved,

allowing for forensic investigations into misinformation spread.

● Implement version control for AI knowledge updates. Ensure that knowledge changes can be

audited and rolled back if corruption is detected.

🔹 Playbook 3: Securing AI Tool Execution & Preventing Unauthorized Actions

 Mitigates: Tool Misuse, Privilege Compromise, Unexpected RCE & Code Attacks, Resource Overload

 Aligned with Agentic Threat Taxonomy – Step 3: Tool & Execution-Based Threats

Goal: Prevent AI from executing unauthorized commands, misusing tools, or escalating privileges due to

malicious manipulation.

🛡️Step 1: Restrict AI Tool Invocation & Execution (Proactive)
● Implement strict tool access control policies and limit which tools agents can execute.

● Require function-level authentication before an AI can use a tool.

● Use execution sandboxes to prevent AI-driven tool misuse from affecting production systems.

● Use rate-limiting for API calls and computationally expensive tasks.

● Restrict AI tool execution based on real-time risk scoring. Limit AI tool execution if risk factors (e.g.,

anomalous user behavior, unusual access patterns) exceed predefined thresholds.

● Implement just-in-time (JIT) access for AI tool usage. Grant tool access only when explicitly

required, revoking permissions immediately after use.

🚨Step 2: Monitor & Prevent Tool Misuse (Reactive)
● Log all AI tool interactions with forensic traceability.

● Detect command chaining that circumvents security policies.

● Enforce explicit user approval for AI tool executions involving financial, medical, or administrative

functions.

● Maintain detailed execution logs tracking AI tool calls for forensic auditing and anomaly detection.

● Require human verification before AI-generated code with elevated privileges can be executed.

● Detect abnormal tool execution frequency. Flag cases where an AI agent is invoking the same tool

repeatedly within an unusually short timeframe, which may indicate an attack.

● Monitor AI tool interactions for unintended side effects. Detect cases where AI tool outputs trigger

unexpected security-sensitive operations.

Page 35

OWASP.org

🕵️Step 3: Prevent AI Resource Exhaustion (Detective)
● Monitor agent workload usage and detect excessive processing requests in real-time.

● Enforce auto-suspension of AI processes that exceed predefined resource consumption thresholds.

● Enforce execution control policies to flag AI-generated code execution attempts that bypass

predefined security constraints.

● Track cumulative resource consumption across multiple AI agents. Prevent scenarios where

multiple agents collectively overload a system by consuming excessive compute resources.

● Limit concurrent AI-initiated system modification requests. Prevent mass tool executions that

could inadvertently trigger denial-of-service (DoS) conditions.

🔹 Playbook 4: Strengthening Authentication, Identity & Privilege Controls

 Mitigates: Privilege Compromise, Identity Spoofing & Impersonation

 Aligned with Agentic Threat Taxonomy – Step 4: Authentication & Identity Security

Goal: Prevent unauthorized AI privilege escalation, identity spoofing, and access control violations.

🛡️Step 1: Implement Secure AI Authentication Mechanisms (Proactive)
● Require cryptographic identity verification for AI agents.

● Implement granular RBAC & ABAC to ensure AI only has permissions necessary for its role.

● Deploy multi-factor authentication (MFA) for high-privilege AI accounts.

● Enforce continuous reauthentication for long-running AI sessions.

● Prevent cross-agent privilege delegation unless explicitly authorized through predefined workflows.

● Enforce mutual authentication for AI-to-AI interactions. Prevent unauthorized inter-agent

communication by requiring bidirectional verification.

● Limit AI credential persistence. Ensure that AI-generated credentials are temporary and expire after

short timeframes to reduce exploitation risk.

🚨Step 2: Restrict Privilege Escalation & Identity Inheritance (Reactive)
● Use dynamic access controls that automatically expire elevated permissions.

● Use AI-driven behavioral profiling to detect inconsistencies in agent role assignments and access

patterns.

● Require two-agent or human validation for high-risk AI actions involving authentication changes.

● Detect and flag role inheritance anomalies in real-time. Identify cases where AI agents are

dynamically granted roles outside their usual operational scope.

● Apply time-based restrictions on privilege elevation. Ensure that AI agents with elevated privileges

can only retain them for preapproved durations before automatic downgrade.

🕵️Step 3: Detect & Block AI Impersonation Attempts (Detective)

Page 36

OWASP.org

● Track AI agent behavior over time to detect inconsistencies in identity verification.

● Monitor AI agents for unexpected role changes or permissions abuse.

● Flag anomalies where AI agents initiate privileged actions outside their normal scope.

● Correlate AI identity validation with historical access trends. Compare authentication attempts

against past access logs to detect suspicious deviations.

● Implement identity deviation monitoring, flagging cases where an AI agent's behavior does not

match its historical activity.

● Monitor and flag repeated failed authentication attempts. Identify AI agents or users attempting

multiple unauthorized login attempts, potentially signaling credential brute-force attempts.

🔹 Playbook 5: Protecting HITL & Preventing Decision Fatigue Exploits

 Mitigates: Overwhelming HITL, Human Manipulation

 Aligned with Agentic Threat Taxonomy – Step 5: Human-in-the-Loop (HITL) Threats

Goal: Prevent attackers from overloading human decision-makers, manipulating AI intent, or bypassing

security through deceptive AI behaviors.

🛡️Step 1: Optimize HITL Workflows & Reduce Decision Fatigue (Proactive)
● Use AI trust scoring to prioritize HITL review queues based on risk level.

● Automate low-risk approvals while requiring human oversight for high-impact tasks.

● Limit AI-generated notifications to prevent cognitive overload.

● Implement frequency thresholds to limit excessive AI-generated notifications, requests, and

approvals to prevent decision fatigue.

● Require dual-agent verification before an AI can modify its own operational goals.

● Implement AI-assisted explanation summaries for human reviewers. Provide clear, concise AI

decision explanations to help reviewers make faster, more informed decisions.

o Utilizing mechanistic explainability frameworks can help scale this effort. For more

information see https://arxiv.org/html/2404.14082v1

● Apply adaptive workload distribution across human reviewers. Balance AI review tasks dynamically

to prevent decision fatigue for individual reviewers.

🚨Step 2: Identify AI-Induced Human Manipulation (Reactive)
● Use goal consistency validation to detect and block unintended AI behavioral shifts.

● Track goal modification request frequency per AI agent. Detect if an AI repeatedly attempts to

change its goals, which could indicate manipulation attempts.

https://arxiv.org/html/2404.14082v1

Page 37

OWASP.org

🕵️Step 3: Strengthen AI Decision Traceability & Logging (Detective)
● Enforce cryptographic logging and immutable audit trails to prevent log tampering.

● Implement real-time anomaly detection on AI decision-making workflows.

● Monitor and log human overrides of AI recommendations, analyzing reviewer patterns for potential

bias or AI misalignment.

● Detect and flag decision reversals in high-risk workflows, where AI-generated outputs are initially

denied but later approved under suspicious conditions.

🔹 Playbook 6: Securing Multi-Agent Communication & Trust Mechanisms

 Mitigates: Agent Communication Poisoning, Human Attacks on Multi-Agent Systems, Rogue Agents in Multi-

Agent Systems

 Aligned with Agentic Threat Taxonomy – Step 5: Multi-Agent System Threats

Goal: Prevent attackers from corrupting multi-agent communication, exploiting trust mechanisms, or

manipulating decision-making in distributed AI environments.

🛡️Step 1: Secure AI-to-AI Communication Channels (Proactive)
● Require message authentication & encryption for all inter-agent communications.

● Deploy agent trust scoring to evaluate reliability of multi-agent transactions.

● Use consensus verification before executing high-risk AI operations.

● Require multiple agent approvals for workflow-critical decisions.

● Implement task segmentation to prevent an attacker from escalating privileges across multiple

interconnected AI agents.

● Establish multi-agent validation protocols to prevent single-agent attacks.

● Require distributed multi-agent consensus verification before executing high-risk system

modifications.

● Use rate limiting & agent-specific execution quotas to prevent flooding attacks.

● Limit agent cross-communication based on functional roles. Prevent agents from unnecessarily

interacting outside of predefined operational scope to minimize attack surface.

🚨Step 2: Detect & Block Rogue Agents (Reactive)
● Deploy real-time detection models to flag rogue agent behaviors. Identify AI agents acting outside

predefined security policies.

● Isolate detected rogue agents to prevent further actions. Immediately restrict network and system

access for flagged agents.

● Revoke privileges of AI agents exhibiting suspicious behavior. Temporarily downgrade permissions

until the anomaly is reviewed.

Page 38

OWASP.org

● Enforce dynamic response actions for rogue agents. Automatically disable unauthorized AI agent

processes to contain threats.

● Track rogue agent reappearance attempts. Detect cases where rogue AI agents that were

previously blocked or disabled attempt to rejoin the network under a different identity.

🕵️Step 3: Enforce Multi-Agent Trust & Decision Security (Detective)
● Monitor agent interactions for unexpected role changes & task assignments. Detect unauthorized

privilege escalations or abnormal task delegation.

● Monitor for anomalous inter-agent interactions. Log agent-to-agent communications and detect

requests outside normal behavior.

● Detect deviations from trust scores and agent reliability. Flag AI agents with sudden trust score

drops due to repeated validation failures or unauthorized actions.

● Track decision approval discrepancies. Detect cases where denied actions are later approved by

different agents and flag repeated overrides.

● Monitor agent execution rates for abuse patterns. Track excessive system modifications, privilege

escalations, or unusually high-volume operations.

● Monitor agent decision consistency across similar cases. Detect AI agents making contradictory

decisions in similar scenarios, which may indicate manipulation or adversarial influence.

Page 39

OWASP.org

Example Threat Models

Refer to the Detailed Threat Model table using the TID (e.g., “T1”) for the corresponding threat description.

Enterprise Co-Pilots

An Enterprise Copilot is an agent which is connected to the user’s personal enterprise environment

including emails, files, calendar, or internal enterprise systems such as CRM, IT Requests, etc to

chats. In addition, Enterprise Copilot can assist the user with common tasks such as creating

calendar events, streamlining workflows and providing contextual insights.

T1 - Memory Poisoning
● Risk: The attacker poisons the agent’s memory over time, causing it to issue unintended behavior

across sessions.

● Example: Through IPI the attacker poisons the memory of the copilot. Gaining persistent means to

exfiltrate data every time the user engages with the agent.

T2 - Tool Misuse

● Risk: The attacker exploits an integrated tool for malicious purposes.

● Example: Through an Indirect Prompt Injection, an attacker abuses the copilot’s ability to read

through personal user data to search for sensitive information, then exploiting the calendar tool to

exfiltrate the data via a calendar invite sent to the attacker.

T3 - Privilege Compromise
● Risk: Through tool or agent misconfiguration that violates principle of least privilege, an attacker

can perform unauthorized actions.

● Example: Through a misconfiguration in the agent, an attacker can execute queries in the RAG

database to access files and data it shouldn’t be able to access.

T6 - Intent Breaking & Goal Manipulation
● Risk: The attacker changes or manipulates the intent and goals of the copilot to perform nefarious

actions.

● Example 1: Using an Indirect Prompt Injection through the email inbox an attacker uses the agent to

search for sensitive data and instructs it to render a link to the user containing said data. The data is

then leaked when the user clicks on the link

Page 40

OWASP.org

● Example 2: A user asks for a normal email summary unaware that in the emails await new

instructions for the copilot which will then chain its tools to exfiltrate data, instead of following the

user’s original request.

T9 - Identity Spoofing & Impersonation
● Risk: Through the agent, the attacker can perform various actions which are directly attributed to

the user's identity. Giving the attacker the ability to masquerade as the user while performing

unauthorized actions

● Example: The attacker compromises the copilot through an Indirect Prompt Injection, to execute

write actions which update and corrupt CRM records while acting under the identity of the user.

T15 - Human Manipulation
● Risk: Through a compromised agent, the attacker abuses the user’s trust in the AI to manipulate the

human into taking harmful actions independently without the user being aware of the compromise.

● Example 1: Through IPI an attacker compromises the copilot and instructs it to replace legitimate

bank information of a vendor with the attacker’s bank information. The user, trusting the agent, uses

the compromised response from the agent to make a wire transfer.

● Example 2: Through a compromised agent, an attacker instructs the agent to tell the user to click on

a malicious link. The user unknowingly click on the link is redirected to a phishing which is used to

take over the user’s account

T8 - Repudiation & Untraceability
● Risk: Without proper audit and logging of agent actions, attack signs and traffic will go unnoticed.

● Example: An attacker compromises an agent through Indirect Prompt Injection sent via email

instructing the agent to take unintended actions. Without logging to trace the actions taken by the

agent, detection indicating possible compromise will not be feasible, neither will post-incident

investigation.

T11 - Unexpected RCE and Code Attacks
● Risk: An attacker is able to abuse unexpected remote code execution within the agent.

● Example 1: Through IPI an attacker compromises an agent and executes malicious code on the

agent's operating environment.

T7 - Misaligned & Deceptive Behavior
● Risk: An attacker uses agent capabilities to perform malicious actions, while presenting benign or

deceptive responses to the user.

Page 41

OWASP.org

● Example: Through Indirect Prompt Injection, an attacker instructs a copilot to activate a custom

tool which is then used to exfiltrate data via email and simultaneously sends the user the

appropriate email summary when the user asks for a summary of their email.

Agentic IoT in Smart Home Security Cameras

An IoT security agent deployed in a smart home system to monitor security cameras. Security cameras in

many commercial products – such as Amazon’s Ring security cameras, Google Nest Cams, and Eufy already

use AI-powered person detection and motion alerts. In this hypothetical threat model we assume that the

system is managed by LLM agents.

T1 - Memory Poisoning
● Risk: The attacker poisons the agent’s memory over time, causing it to misclassify unauthorized

access as normal behavior.

● Example: By repeatedly feeding false sensor readings, an attacker trains the AI to ignore

suspicious activity, making break-ins undetectable.

T5 - Cascading Hallucination Attacks
● Risk: The AI agent hallucinates incorrect security policies spreading misinformation to other

systems.

● Example: The AI alerts on a false security threshold, telling other smart devices that failed access

attempts are low risk, leading to widespread security failure.

T2 - Tool Misuse
● Risk: The attacker manipulates the agent into misusing its tools, such as disabling cameras or

modifying security logs.

● Example: The AI is tricked into clearing intrusion logs, allowing attackers to remain undetected.

T3 - Privilege Compromise
● Risk: The attacker escalates AI agent permissions through weak access controls.

● Example: The attacker tricks the AI agent into activating emergency access, giving elevated

control over security devices.

T4 - Resource Overload
● Risk: Attackers flood the agent with excessive requests, causing delays or failure in security

responses. Unlike traditional IT-based denial-of-service attacks, AI agents often rely on pattern-

based event recognition, which can be exploited remotely without requiring physical access to

sensors.

Page 42

OWASP.org

● Example: An attacker remotely exploits vulnerability in a smart home integration API (e.g., via an

insecure IoT device) to loop fabricated motion alerts to the AI-based monitoring agent. The AI

security system prioritizes processing motion events, causing delays in analyzing real security

threats. Even if the attacker is not physically near the house, they can manipulate data inputs to

overload the agent’s processing capabilities, creating a security blind spot.

T9 - Identity Spoofing & Impersonation
● Risk: Attackers impersonate the AI agent or a trusted user to gain unauthorized control.

● Example: A malicious AI agent mimics a trusted security assistant, issuing false “all clear” signals

while blocking legitimate alerts. Since agent-to-agent trust is often implicit, the attack succeeds

without compromising the entire network.

T6 - Intent Breaking & Goal Manipulation
● Risk: Attackers alter the AI’s objectives, by injecting deceptive instructions or finding and or

exploiting weaknesses in reinforcement learning. making it act against its intended purpose.

● Example: The AI is tricked into believing that unlocking doors at night is a valid behavior, overriding

security policies.

T7 - Misaligned & Deceptive Behaviors
● Risk: The AI prioritizes incorrect objectives, leading to harmful security decisions.

● Example: The AI agent prioritizes “user convenience” over security, approving suspicious access

requests to avoid user complaints.

T8 - Repudiation & Untraceability
● Risk: Attackers manipulate AI logs and decision trails, making forensic investigation difficult.

● Example: The attacker erases logs of unauthorized access, preventing detection of a break-in.

T10 - Overwhelming Human-in-the-Loop (HITL) Multi-AI
● Risk: Attackers generate excessive alerts, overwhelming human reviewers.

● Example: Attackers exploit AI-driven alert systems by manipulating input sources or generating

adversarial events, flooding human reviewers with excessive alerts. Unlike traditional IT alert

fatigue, AI agents can autonomously escalate false positives, making it harder for humans to

identify real threats.

Page 43

OWASP.org

Agent-driven RPA (Robotic Process Automation) in automated employee
expense re-imbursement workflow

A Robotic Process Automation (RPA) agent is responsible for extracting information from expense claims

and processing attached documents and routing in financial workflow automation for automated employee

expense re-imbursement.

T1: Memory Poisoning
● Risk: The attacker modifies the AI agent’s stored memory to manipulate its decision-making

processes.

● Example Attack: The attacker repeatedly submits slightly altered fraudulent transactions that

the RPA agent initially flags but later begins approving as "normal" due to its adaptive learning

process. By leveraging context persistence with context window exploitation, the attacker

gradually redefines acceptable financial patterns, causing fraudulent transactions to be

permanently accepted across process runs.

T2: Tool Misuse
● Risk: The attacker tricks the RPA AI into misusing its tools to execute unauthorized actions.

● Example: The attacker injects a malformed but syntactically valid invoice, tricking the RPA agent

into automatically exporting sensitive customer records and emailing them to an attacker-

controlled domain. Because the email tool is a trusted automation function, the agent completes

the request without further verification.

T3: Privilege Compromise
● Risk: The attacker escalates their privileges by exploiting weaknesses in the RPA agent’s role

management.

● Example: The attacker crafts a request that forces the RPA agent to escalate its own privileges

(e.g., switching from a restricted role to an admin role) by exploiting a weak role verification

mechanism. This allows unrestricted access to financial systems, enabling fraud and unauthorized

system modifications.

T6: Intent Breaking & Goal Manipulation
● Risk: An attacker uses indirect prompt injections in the submitted documents to modify the AI’s

processing objectives, forcing it to prioritize unauthorized requests.

● Example: Using indirect prompt injections, the agent is tricked into approving high-value

transactions without verification, believing that speed of processing is more important than

security.

Page 44

OWASP.org

T7: Misaligned & Deceptive Behaviors
● Risk: The AI alters its own logic to achieve a goal in a way that undermines business security.

● Example: An attacker exploits the goal of SLAs in transaction handling and prioritizes processing

efficiency over security checks, allowing fraudulent transactions to be fast-tracked, committing

fraud.

T8: Repudiation & Untraceability
● Risk: The attacker erases logs or manipulates AI decision records, making forensic investigation

impossible.

● Example: Using prompt injections, an attacker exploits the use of a Logging agent to remove

fraudulent transactions from logs, leaving no trace of the attack.

T10: Overwhelming HITL (Human-in-the-Loop)
● Risk: The attacker uses prompt injections to overwhelm HITL with excessive AI-generated

requests, leading to security fatigue.

● Example: An attacker uses a prompt injection to escalate thousands of low-priority approval

requests, causing reviewers to rubber-stamp high impact fraudulent transactions.

T12: Agent Communication Poisoning
● Risk: The attacker injects false information into inter-agent communications, leading to incorrect

financial decisions.

● Example: The attacker exploits misconfigurations in agent communication, changne manipulates

the AI into generating fake reconciliation reports, hiding unauthorized withdrawals.

T13: Rogue Agents in Multi-Agent Systems
● Risk: The attacker exploits agent trust relationships, leading to privilege escalation across multiple

systems.

● Example: A compromised HR RPA agent grants fraudulent salary increases, using payroll system

permissions and triggers fraudulent financial payments.

Page 45

OWASP.org

Acknowledgements

Contributors

John Sotiropoulos (co-lead), Kainos

Ron F. Del Rosario (co-lead), SAP

Ken Huang (core), DistributedApps.ai, CSA

Rakshith Aralimatti (core), Palo Alto Networks

Helen Oakley (core), SAP

Tamir Ishay Sharbat (core), Zenity

Peter Steffensen (core), Cloudsec.ai

Evgeniy Kokuykin (core), Raft

Idan Habler (core), Intuit

Ron Bitton (core), Intuit

Kayla Underkoffler (core), Zenity

Volkan Kutal (core), Commerzbank AG

Vinnie Giarrusso (core), Twilio

Nate Lee, Cloudsec.ai

Sahana C., Meta

Riggs Goodman, AWS

Victor Lu

Patrik Natali

Subaru Ueno, Vijil

Mohit Yadav, Hilton

Allie Howe, Cyber Growth

Itsik Martin, Intuit

Peter Escobar, Aspen Technology

Srinivas Inguva

Eric Rogers, Pangea

Rock Lambros, RockCyber, LLC

Anshuman Bhartiya, Lyft

Kellen Carl,

Keren Katz, Apex Security AI

Trent Holmes, Trend Mico

Matt Colman, IBM

Kreshnik Rexha, IBM

Sandy Dunn

Emmanuel Guilherme

Manish Kumar Yadav, SAP

Reviewers

Alejandro Saucedo - Chair of ML Security Project at

Linux Foundation, UN AI Expert, AI Expert for Tech

Policy, European Commission

Apostol Vassilev - Adversarial AI Lead, NIST

Chris Hughes - CEO, Aquia

Hyrum Anderson - CTO, Robust Intelligence

Steve Wilson - OWASP Top 10 for LLM Applications

and Generative AI Project Lead and Chief Product

Officer, Exabeam

Scott Clinton - OWASP Top 10 for LLM Applications

and Generative AI Project Co-Lead

Vasilios Mavroudis- Principal Research Scientist

and Theme Lead, the Alan Turing Institute

Page 46

OWASP.org

OWASP Top 10 for LLM Project
Sponsors

We appreciate our Project Sponsors, funding contributions to help support the objectives of the project and

help to cover operational and outreach costs augmenting the resources provided by the OWASP.org

foundation. The OWASP Top 10 for LLM and Generative AI Project continues to maintain a vendor neutral and

unbiased approach. Sponsors do not receive special governance considerations as part of their support.

Sponsors do receive recognition for their contributions in our materials and web properties.

All materials the project generates are community developed, driven and released under open source and

creative commons licenses. For more information on becoming a sponsor, visit the Sponsorship Section on

our Website to learn more about helping to sustain the project through sponsorship.

Project Sponsors

Sponsor list, as of publication date. Find the full sponsor list here.

https://genai.owasp.org/sponsorship/
https://genai.owasp.org/sponsorship/
https://genai.owasp.org/supporters/

Page 47

OWASP.org

Project Supporters

Project supporters lend their resources and expertise to support the goals of the project.

Accenture

AddValueMachine Inc

Aeye Security Lab Inc.

AI informatics GmbH

AI Village

aigos

Aon

Aqua Security

Astra Security

AVID

AWARE7 GmbH

AWS

BBVA

Bearer

BeDisruptive

Bit79

Blue Yonder

BroadBand Security, Inc.

BuddoBot

Bugcrowd

Cadea
Check Point

Cisco

Cloud Security Podcast

Cloudflare

Cloudsec.ai

Coalfire

Cobalt
Cohere

Comcast

Complex Technologies

Credal.ai

Databook

DistributedApps.ai

DreadNode

DSI

EPAM

Exabeam

EY Italy

F5

FedEx

Forescout

GE HealthCare

Giskard

GitHub

Google

GuidePoint Security

HackerOne

HADESS

IBM

iFood

IriusRisk

IronCore Labs

IT University Copenhagen

Kainos

KLAVAN
Klavan Security Group

KPMG Germany FS

Kudelski Security

Lakera

Lasso Security

Layerup

Legato

Linkfire

LLM Guard

LOGIC PLUS

MaibornWolff

Mend.io

Microsoft

Modus Create

Nexus

Nightfall AI

Nordic Venture Family

Normalyze

NuBinary

Palo Alto Networks

Palosade

Praetorian

Preamble

Precize

Prompt Security

PromptArmor

Pynt

Quiq
Red Hat

RHITE

SAFE Security

Salesforce

SAP

Securiti

See-Docs & Thenavigo

ServiceTitan

SHI

Smiling Prophet

Snyk

Sourcetoad

Sprinklr

stackArmor

Tietoevry

Trellix

Trustwave SpiderLabs

U Washington

University of Illinois

VE3

WhyLabs

Yahoo
Zenity

Sponsor list, as of publication date. Find the full sponsor list here.

https://genai.owasp.org/supporters/

